Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Method for Determining Blood Parameters
2.3. Machine Learning Algorithms
3. Results
3.1. Registration and Collection of ECG Data
3.2. Verification of Cardiospikes
- Pan–Tompkins;
- Hamilton;
- Two-Moving-Average.
3.3. Measurement of Blood Parameters
3.4. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Heymann, D.; Shindo, N. COVID-19: What is next for public health? Lancet 2020, 395, 542–545. [Google Scholar] [CrossRef]
- Mudatsir, M.; Fajar, J.; Wulari, L.; Soegiarto, G.; Ilmawan, M.; Purnamasari, Y.; Mahdi, B.; Jayanto, G.; Suhendra, S.; Setianingsih, Y. Others Predictors of COVID-19 severity: A systematic review and meta-analysis. F1000Research 2021, 9, 1107. [Google Scholar] [CrossRef] [PubMed]
- Trypsteen, W.; Van Cleemput, J.; Snippenberg, W.; Gerlo, S.; Vandekerckhove, L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog. 2020, 16, e1009037. [Google Scholar] [CrossRef] [PubMed]
- Saniasiaya, J.; Islam, M.; Abdullah, B. Prevalence and characteristics of taste disorders in cases of COVID-19: A meta-analysis of 29,349 patients. Otolaryngol. Neck Surg. 2021, 165, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, A.; Chin, K.L.; Ersdorfer, C.; Liew, D.; Ofori-Asenso, R. Smell and taste dysfunction in patients with COVID-19: A systematic review and meta-analysis. Mayo Clin. Proc. 2020, 95, 1621–1631. [Google Scholar] [CrossRef]
- Oran, D.; Topol, E. The proportion of SARS-CoV-2 infections that are asymptomatic: A systematic review. Ann. Intern. Med. 2021, 174, 655–662. [Google Scholar] [CrossRef]
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report; World Health Organization: Geneva, Switzerland, 2020; Volume 46.
- Rahmati, M.; Moosavi, M. Cytokine-targeted therapy in severely ill COVID-19 patients: Options and cautions. Mortality 2020, 4, 179–180. [Google Scholar] [CrossRef]
- Beeching, N.; Fletcher, T.; Fowler, R. Complications. Coronavirus disease 2019 (COVID-19). BMJ Best Pract. 2020. [Google Scholar]
- Miskowiak, K.; Johnsen, S.; Sattler, S.; Nielsen, S.; Kunalan, K.; Rungby, J.; Lapperre, T.; Porsberg, C. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021, 46, 39–48. [Google Scholar] [CrossRef]
- Beaud, V.; Crottaz-Herbette, S.; Dunet, V.; Vaucher, J.; Bernard-Valnet, R.; Du Pasquier, R.; Bart, P.; Clarke, S. Pattern of cognitive deficits in severe COVID-19. J. Neurol. Neurosurg. Psychiatry 2021, 92, 567–568. [Google Scholar] [CrossRef]
- Devita, M.; Bordignon, A.; Sergi, G.; Coin, A. The psychological and cognitive impact of COVID-19 on individuals with neurocognitive impairments: Research topics and remote intervention proposals. Aging Clin. Exp. Res. 2021, 33, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.; Chesney, E.; Oliver, D.; Pollak, T.; McGuire, P.; Fusar-Poli, P.; Zandi, M.; Lewis, G.; David, A. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.; Murray, B.; Varsavsky, T.; Graham, M.; Penfold, R.; Bowyer, R.; Pujol, J.; Klaser, K.; Antonelli, M.; Canas, L.; et al. Attributes and predictors of long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Juan Jose, J.; Huda, M. The effects of COVID-19 on hypothalamus: Is it another face of SARS-CoV-2 that may potentially control the level of COVID-19 severity. Int. J. Clin. Stud. Med. Case Rep. 2020, 7, 5. [Google Scholar] [CrossRef]
- Stasenko, S.; Hramov, A.; Kazantsev, V. Loss of neuron network coherence induced by virus-infected astrocytes: A model study. Sci. Rep. 2023, 13, 6401. [Google Scholar] [CrossRef]
- Lu, Y.; Li, X.; Geng, D.; Mei, N.; Wu, P.; Huang, C.; Jia, T.; Zhao, Y.; Wang, D.; Xiao, A.; et al. Cerebral micro-structural changes in COVID-19 patients–an MRI-based 3-month follow-up study. EClinicalMedicine 2020, 25, 100484. [Google Scholar] [CrossRef]
- Hajra, A.; Mathai, S.; Ball, S.; Bandyopadhyay, D.; Veyseh, M.; Chakraborty, S.; Lavie, C.; Aronow, W. Management of thrombotic complications in COVID-19: An update. Drugs 2020, 80, 1553–1562. [Google Scholar] [CrossRef]
- De Melo, G.; Lazarini, F.; Levallois, S.; Hautefort, C.; Michel, V.; Larrous, F.; Verillaud, B.; Aparicio, C.; Wagner, S.; Gheusi, G.; et al. COVID-19-associated olfactory dysfunction reveals SARS-CoV-2 neuroinvasion and persistence in the olfactory system. BioRxiv 2020. [Google Scholar] [CrossRef]
- Choi, B.; Choudhary, M.; Regan, J.; Sparks, J.; Padera, R.; Qiu, X.; Solomon, I.; Kuo, H.; Boucau, J.; Bowman, K.; et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 2020, 383, 2291–2293. [Google Scholar] [CrossRef]
- Hu, F.; Chen, F.; Ou, Z.; Fan, Q.; Tan, X.; Wang, Y.; Pan, Y.; Ke, B.; Li, L.; Guan, Y.; et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell. Mol. Immunol. 2020, 17, 1119–1125. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.; Mehra, M.; Schuepbach, R.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef] [PubMed]
- Booz, G.; Altara, R.; Eid, A.; Wehbe, Z.; Fares, S.; Zaraket, H.; Habeichi, N.; Zouein, F. Macrophage responses associated with COVID-19: A pharmacological perspective. Eur. J. Pharmacol. 2020, 887, 173547. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.; Ju, E.; Meng, W.; Paniz Mondolfi, A.; Dacic, S.; Green, A.; Bryce, C.; Grimes, Z.; Fowkes, M.; Sordillo, E.; et al. Broad SARS-CoV-2 cell tropism and immunopathology in lung tissues from fatal COVID-19. J. Infect. Di 2021, jiab195. [Google Scholar]
- Banerjee, A.; Nasir, J.; Budylowski, P.; Yip, L.; Aftanas, P.; Christie, N.; Ghalami, A.; Baid, K.; Raphenya, A.; Hirota, J.; et al. Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, 26, 2054. [Google Scholar] [CrossRef]
- Wang, E.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.; Jaycox, J.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021, 595, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Estes, S.; Ali, R.G.; Hi, A.; Yalavarthi, S.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.; Zuo, M.; et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci. Transl. Med. 2020, 12, eabd3876. [Google Scholar] [CrossRef]
- Garvin, M.; Alvarez, C.; Miller, J.; Prates, E.; Walker, A.; Amos, B.; Mast, A.; Justice, A.; Aronow, B.; Jacobson, D. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife 2020, 9, e59177. [Google Scholar] [CrossRef]
- Afrin, L.; Weinstock, L.; Molderings, G. COVID-19 hyperinflammation and post-COVID-19 illness may be rooted in mast cell activation syndrome. Int. J. Infect. Dis. 2020, 100, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Nalbian, A.; Desai, A.; Wan, E. Post-COVID-19 condition. Annu. Rev. Med. 2023, 74, 55–64. [Google Scholar] [CrossRef]
- Doykov, I.; Hällqvist, J.; Gilmour, K.; Grjean, L.; Mills, K.; Heywood, W. ‘The long tail of COVID-19’-The detection of a prolonged inflammatory response after a SARS-CoV-2 infection in asymptomatic and mildly affected patients. F1000Research 2020, 9. [Google Scholar] [CrossRef]
- Bergamaschi, L.; D’Angelo, E.; Paolisso, P.; Toniolo, S.; Fabrizio, M.; Angeli, F.; Donati, F.; Magnani, I.; Rinaldi, A.; Bartoli, L.; et al. The value of ECG changes in risk stratification of COVID-19 patients. Ann. Noninvasive Electrocardiol. 2021, 26, e12815. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Wang, J.; He, X.; Huang, F.; Chen, J.; Yang, X. Electrocardiogram analysis of patients with different types of COVID-19. Ann. Noninvasive Electrocardiol. 2020, 25, e12806. [Google Scholar] [CrossRef]
- Chorin, E.; Dai, M.; Kogan, E.; Wadhwani, L.; Shulman, E.; Nadeau-Routhier, C.; Knotts, R.; Bar-Cohen, R.; Barbhaiya, C.; Aizer, A.; et al. Electrocardiographic risk stratification in COVID-19 patients. Front. Cardiovasc. Med. 2021, 8, 636073. [Google Scholar] [CrossRef] [PubMed]
- Angeli, F.; Spanevello, A.; De Ponti, R.; Visca, D.; Marazzato, J.; Palmiotto, G.; Feci, D.; Reboldi, G.; Fabbri, L.; Verdecchia, P. Electrocardiographic features of patients with COVID-19 pneumonia. Eur. J. Intern. Med. 2020, 78, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Mehraeen, E.; Alinaghi, S.; Nowroozi, A.; Dadras, O.; Alilou, S.; Shobeiri, P.; Behnezhad, F.; Karimi, A. A systematic review of ECG findings in patients with COVID-19. Indian Heart J. 2020, 72, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Bassiouni, M.; Hegazy, I.; Rizk, N.; El-Dahshan, E.; Salem, A. Automated detection of COVID-19 using deep learning approaches with paper-based ecg reports. Circuits Syst. Signal Process. 2022, 41, 5535–5577. [Google Scholar] [CrossRef]
- Nguyen, T.; Pham, H.; Le, K.; Nguyen, A.; Thanh, T.; Do, C. Detecting COVID-19 from digitized ECG printouts using 1D convolutional neural networks. PLoS ONE 2022, 17, e0277081. [Google Scholar] [CrossRef]
- Mishra, T.; Wang, M.; Metwally, A.; Bogu, G.; Brooks, A.; Bahmani, A.; Alavi, A.; Celli, A.; Higgs, E.; Dagan-Rosenfeld, O.; et al. Early detection of COVID-19 using a smartwatch. MedRxiv 2020. [Google Scholar] [CrossRef]
- Ponomarev, A.; Tyapochkin, K.; Surkova, E.; Smorodnikova, E.; Pravdin, P. Heart rate variability as a prospective predictor of early COVID-19 symptoms. MedRxiv 2021. [Google Scholar] [CrossRef]
- Hasty, F.; Garcia, G.; Davila, H.; Wittels, S.; Hendricks, S.; Chong, S. Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil. Med. 2021, 186, e34–e38. [Google Scholar] [CrossRef]
- Smilowitz, N.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.; Berger, J. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef]
- Parin, V.V.; Baevsky, P.M. Introduction to Medical Cybernetics; University of Pennsylvania: Philadelphia, PA, USA, 1966; p. 220. [Google Scholar]
- Kaznacheev, V.P.; Baevsky, R.M.; Berseneva, A.P.; Domakhina, G.M.; Polyakov, Y.V. On some features of the adaptation of the organism in connection with the profession and age. Labor Hyg. Occup. Dis. 1978, 2, 21–26. [Google Scholar]
- Grigoriev, A.I.; Bayevsky, R.M. The Concept of Health and the Problem of the Norm in Space Medicine; Slovo: Moscow, Russia, 2001; p. 95. [Google Scholar]
- Shlyk, N.I.; Sapozhnikova, E.N.; Kirillova, E.N.; Semenov, V.G. Typological features of the functional state of regulatory systems in schoolchildren and young athletes (according to the analysis of heart rate variability). Hum. Physiol. 2009, 35, 85–93. [Google Scholar] [CrossRef]
- Acharya, U.; Oh, S.; Hagiwara, Y.; Tan, J.; Adam, M.; Gertych, A.; Tan, R.S. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Hannun, A.; Rajpurkar, P.; Haghpanahi, M.; Tison, G.; Bourn, C.; Turakhia, M.; Ng, A. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat. Med. 2019, 25, 65–69. [Google Scholar] [CrossRef]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.; Hallock, L.; Beussink-Nelson, L.; Lassen, M.; Fan, E.; Aras, M.; Jordan, C.; et al. Fully automated echocardiogram interpretation in clinical practice: Feasibility and diagnostic accuracy. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Hannun, A.; Haghpanahi, M.; Bourn, C.; Ng, A. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv 2017, arXiv:1707.01836. [Google Scholar]
- Nekrasova, M.M.; Karatushina, D.I.; Parin, S.B.; Polevaya, S.A. Application of information technologies for assessment of professional risks for high-altitude assemblers during periodic medical examination. Med. Alm. 2011, 3, 26–31. [Google Scholar]
- Polevaya, S.A.; Parin, S.B.; Runova, E.V.; Nekrasova, M.M.; Fedotova, I.V.; Bakhchina, A.V.; Kovalchuk, A.V.; Shishalov, I.S. Telemetric and information technologies for monitoring of the functional state of athletes. Mod. Technol. Med. 2012, 4, 94–98. [Google Scholar]
- Runova, E.V.; Grigorieva, V.N.; Bakhchina, A.V.; Parin, S.B.; Shishalov, I.S.; Kozhevnikov, I.S.; Nekrasova, M.M.; Karatushina, D.I.; Grigorieva, D.I.; Polevaya, S.A. Vegetative correlates of arbitrary mappings emotional stress. Int. J. Psychophysiol. 2013, 4, 69–77. [Google Scholar]
- Chernigovskaya, T.; Parin, S.; Parina, I.; Konina, A.; Urikh, D.; Yachmonina, Y.; Chernova, M.; Polevaya, S.A. Simultaneous interpreting and stress: Pilot experiment. Int. J. Psychophysiol. 2016, 108, 165. [Google Scholar] [CrossRef]
- Chernigovskaya, T.V.; Parina, I.S.; Alekseeva, S.V.; Konina, A.A.; Urich, D.K.; Yachmonina, Y.O.; Parin, S.B. Simultaneous interpreting and stress: Pilot experiment. Mod. Technol. Med. 2019, 11, 132–140. [Google Scholar] [CrossRef]
- Polevaya, S.; Eremin, E.; Bulanov, N.; Bakhchina, A.; Kovalchuk, A.; Parin, S. Event-related telemetry of heart rate for personalized remote monitoring of cognitive functions and stress under conditions of everyday activity. Mod. Technol. Med. 2019, 11, 109–114. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A survey of convolutional neural networks: Analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 6999–7019. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Jin, X.; Xie, Y.; Wei, X.; Zhao, B.; Chen, Z.; Tan, X. Delving deep into spatial pooling for squeeze-and-excitation networks. Pattern Recognit. 2022, 121, 108159. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z. Deep residual learning for image recognition: A survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Zaidi, S.; Ansari, M.; Aslam, A.; Kanwal, N.; Asghar, M.; Lee, B. A survey of modern deep learning based object detection models. Digit. Signal Process. 2022, 126, 103514. [Google Scholar] [CrossRef]
- Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Shirshov, Y.A.; Govorin, A.I. Vegetative disorders in patients with influenza A (H1N1). Sib. Med J. 2011, 5, 41–44. [Google Scholar]
- Zufarov, A.A. Indicators of heart rate variability in acute respiratory syndrome in children. Young Sci. 2020, 3, 98–103. [Google Scholar]
- Nepi, D.; Sbrollini, A.; Agostinelli, A.; Maranesi, E.; Morettini, M.; Di Nardo, F.; Fioretti, S.; Pierleoni, P.; Pernini, L.; Valenti, S.; et al. Validation of the heart-rate signal provided by the Zephyr bioharness 3.0. In Proceedings of the 2016 Computing in Cardiology Conference (CinC), Vancouver, BC, Canada, 11–14 September 2016; pp. 361–364. [Google Scholar]
- Howell, L.; Porr, B. Popular ECG R Peak Detectors Written in Python; Zenodo: Geneva, Switzerland, 2019. [Google Scholar]
- Manning, C. An Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Electrophysiology, T. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Baevskiy, R.; Ivanov, G.; Chireykin, L.; Gavrilushkin, A.; Dovgalevskiy, P.; Kukushkin, Y.A.; Mironova, T.; Prilutskiy, D.; Semenov, Y.N.; Fedorov, V.; et al. Analiz variabel’nosti serdechnogo ritma pri ispol’zovanii razlichnykh elektrokardiograficheskikh sistem: Metod. rekomendatsii [Analysis of Heart Rate Variability Using Various Electrocardiographic Systems: Guidelines]. Vestn. Aritmologii 2001, 24, 66–85. [Google Scholar]
- Parin, V.; Baevski, R. Introduction to Medical Cybernetics: By VV Parin and RM Bayevskiy; National Aeronautics: Washington, DC, USA, 1967. [Google Scholar]
- Wolf, M.; Varigos, G.; Hunt, D.; Sloman, J. Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 1978, 2, 52–53. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A. Methods for analyzing heart rate variability over long periods of time. Metod. Anal. Vari 2009. [Google Scholar]
- Sobolev, A.; Ryabykina, G.; Kozhemyakina, E. Specificity of the effect of double fractures of the rhythmogram on the daily variability of the sinus rhythm in patients with pulmonary and arterial hypertension. Syst. Hypertens. 2021, 18, 43–49. [Google Scholar] [CrossRef]
- Asarcikli, L.; Hayiroglu, M.; Osken, A.; Keskin, K.; Kolak, Z.; Aksu, T. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 2022, 63, 715–721. [Google Scholar] [CrossRef]
H (Fixed , ) | C (Fixed , ) | S (Fixed , ) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | 32 | 40 | 56 | 16 | 24 | 32 | 40 | 56 | 72 | 96 |
0.86 | 0.886 | 0.89 | 0.869 | 0.886 | 0.886 | 0.876 | 0.872 | 0.886 | 0.89 | |
0.85 | 0.87 | 0.891 | 0.857 | 0.878 | 0.879 | 0.857 | 0.857 | 0.87 | 0.867 | |
0.93 | 0.943 | 0.944 | 0.932 | 0.943 | 0.934 | 0.93 | 0.929 | 0.943 | 0.946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasenko, S.V.; Kovalchuk, A.V.; Eremin, E.V.; Drugova, O.V.; Zarechnova, N.V.; Tsirkova, M.M.; Permyakov, S.A.; Parin, S.B.; Polevaya, S.A. Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram. Sensors 2023, 23, 5272. https://doi.org/10.3390/s23115272
Stasenko SV, Kovalchuk AV, Eremin EV, Drugova OV, Zarechnova NV, Tsirkova MM, Permyakov SA, Parin SB, Polevaya SA. Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram. Sensors. 2023; 23(11):5272. https://doi.org/10.3390/s23115272
Chicago/Turabian StyleStasenko, Sergey V., Andrey V. Kovalchuk, Evgeny V. Eremin, Olga V. Drugova, Natalya V. Zarechnova, Maria M. Tsirkova, Sergey A. Permyakov, Sergey B. Parin, and Sofia A. Polevaya. 2023. "Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram" Sensors 23, no. 11: 5272. https://doi.org/10.3390/s23115272
APA StyleStasenko, S. V., Kovalchuk, A. V., Eremin, E. V., Drugova, O. V., Zarechnova, N. V., Tsirkova, M. M., Permyakov, S. A., Parin, S. B., & Polevaya, S. A. (2023). Using Machine Learning Algorithms to Determine the Post-COVID State of a Person by Their Rhythmogram. Sensors, 23(11), 5272. https://doi.org/10.3390/s23115272