Major Depressive Disorder and Chronic Fatigue Syndrome Show Characteristic Heart Rate Variability Profiles Reflecting Autonomic Dysregulations: Differentiation by Linear Discriminant Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Ethical Background
2.3. Heart Rate Variability Measurement
2.4. Statistics
2.5. Linear Discriminant Analysis
+ d LF[Rest] + e LF[Task/Rest] + f LF[After/Rest]
+ g LF/HF[Rest] + h LF/HF[Task/Rest] + i LF/HF[After/Rest]
− discriminant point
3. Results
3.1. HRV Indices
3.2. Task Performance
3.3. Linear Discriminant Analysis
4. Discussion
4.1. Normal HRV Pattern
4.2. LF Profiles in MDD and CFS
4.3. HF Profiles in MDD and CFS
4.4. LF+HF Profiles in MDD and CFS
4.5. LF/HF Profiles in MDD and CFS
4.6. HR Profiles in MDD and CFS
4.7. Different Profiles of HRV Indices in MDD and CFS
4.8. Differentiation of MDD and CFS with Linear Discriminant Analysis Using HRV Indices
4.9. Co-Occurrence of MDD and CFS
4.10. Limitations
5. Conclusions (Highlights)
- HRV indices during the three-behavioral-state paradigm in MDD and CFS used in the present study showed both common and different profiles and could be useful for differential diagnosis.
- The common profiles confirmed previous findings.
- The overall HRV reduction at Rest may support a diagnosis of MDD.
- HF reduction at Rest was found in CFS, but with a lesser severity.
- Response disturbances of HRV to the task load were observed in both disorders, and suggest the presence of CFS when the baseline HRV is not reduced.
- Linear discriminant analysis using HRV indices was able to differentiate MDD from CFS, with sensitivity and specificity being 91.8% and 100%, respectively.
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yancey, J.R.; Thomas, S.M. Chronic fatigue syndrome: Diagnosis and treatment. Am. Fam. Physician 2012, 86, 741–746. [Google Scholar]
- Toogood, P.L.; Clauw, D.J.; Phadke, S.; Hoffman, D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Where will the drugs come from? Pharmacol. Res. 2021, 165, 105465. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, S.M.; MacHale, S.M.; Cavanagh, J.T.; O’Carroll, R.E.; Goodwin, G.M. The difference in patterns of motor and cognitive function in chronic fatigue syndrome and severe depressive illness. Psychol. Med. 2000, 30, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Craig, T.; Kakumanu, S. Chronic fatigue syndrome: Evaluation and treatment. Am. Fam. Physician. 2002, 65, 1083–1090. [Google Scholar] [PubMed]
- Reuter, K.; Härter, M. The concepts of fatigue and depression in cancer. Eur. J. Cancer Care 2004, 13, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Fatt, S.J.; Beilharz, J.E.; Joubert, M.; Wilson, C.; Lloyd, A.R.; Vollmer-Conna, U.; Cvejic, E. Parasympathetic Activity Is Reduced During Slow-Wave Sleep, but Not Resting Wakefulness, in Patients with Chronic Fatigue Syndrome. J. Clin. Sleep Med. 2020, 16, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.K.; DeLuca, J.; Natelson, B.H. Depression in fatiguing illness: Comparing patients with chronic fatigue syndrome, multiple sclerosis and depression. J. Affect. Disord. 1996, 39, 21–30. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- World Health Organization. World Health Organization. ICD-10 Version:2019. Depressive Episode. 2019. Available online: https://icd.who.int/browse10/2019/en#/F31 (accessed on 27 March 2023).
- Jones, C.; Nemeroff, C.B. Precision Psychiatry: Biomarker-Guided Tailored Therapy for Effective Treatment and Prevention in Major Depression. Adv. Exp. Med. Biol. 2021, 1305, 535–563. [Google Scholar]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- Kuratsune, H. Diagnosis and Treatment of Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome. Brain Nerve 2018, 70, 11–18. (In Japanese) [Google Scholar] [PubMed]
- Zubieta, J.K.; Engleberg, N.C.; Yargiç, L.I.; Pande, A.C.; Demitrack, M.A. Seasonal symptom variation in patients with chronic fatigue: Comparison with major mood disorders. J. Psychiatr. Res. 1994, 28, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Devanur, L.D.; Kerr, J.R. Chronic fatigue syndrome. J. Clin. Virol. 2006, 37, 139–150. [Google Scholar] [CrossRef]
- Shikova, E.; Reshkova, V.; Kumanova, A.; Raleva, S.; Alexandrova, D.; Capo, N.; Murovska, M. Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in patients with myalgic encephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 2020, 92, 3682–3688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozhgani, S.-H.; Rajabi, F.; Qurbani, M.; Erfani, Y.; Yaslianifard, S.; Moosavi, A.; Pourrostami, K.; Bagheri, A.B.; Soleimani, A.; Behzadian, F.; et al. Human Herpesvirus 6 Infection and Risk of Chronic Fatigue Syndrome: A Systematic Review and Meta-Analysis. Intervirology 2022, 65, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Poenaru, S.; Abdallah, S.J.; Corrales-Medina, V.; Cowan, J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: A narrative review. Ther. Adv. Infect. Dis. 2021, 8, 20499361211009385. [Google Scholar] [CrossRef] [PubMed]
- Fischler, B.; D’Haenen, H.; Cluydts, R.; Michiels, V.; Demets, K.; Bossuyt, A.; Kaufman, L.; De Meirleir, K. Comparison of 99m Tc HMPAO SPECT scan between chronic fatigue syndrome, major depression and healthy controls: An exploratory study of clinical correlates of regional cerebral blood flow. Neuropsychobiology 1996, 34, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Panerai, A.E.; Vecchiet, J.; Panzeri, P.; Meroni, P.; Scarone, S.; Pizzigallo, E.; Giamberardino, M.A.; Sacerdote, P. Peripheral blood mononuclear cell beta-endorphin concentration is decreased in chronic fatigue syndrome and fibromyalgia but not in depression: Preliminary report. Clin. J. Pain 2002, 18, 270–273. [Google Scholar] [CrossRef]
- Pazderka-Robinson, H.; Morrison, J.W.; Flor-Henry, P. Electrodermal dissociation of chronic fatigue and depression: Evidence for distinct physiological mechanisms. Int. J. Psychophysiol. 2004, 53, 171–182. [Google Scholar] [CrossRef]
- Akselrod, S.; Gordon, D.; Madwed, J.B.; Snidman, N.C.; Shannon, D.C.; Cohen, R.J. Hemodynamic regulation: Investigation by spectral analysis. Am. J. Physiol. 1985, 249, H867–H875. [Google Scholar] [CrossRef]
- Malik, M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1106. [Google Scholar] [CrossRef] [Green Version]
- Boneva, R.S.; Decker, M.J.; Maloney, E.M.; Lin, J.M.; Jones, J.F.; Helgason, H.G.; Heim, C.M.; Rye, D.B.; Reeves, W.C. Higher heart rate and reduced heart rate variability persist during sleep in chronic fatigue syndrome: A population-based study. Auton. Neurosci. 2007, 137, 94–101. [Google Scholar] [CrossRef]
- Shinba, T. Altered autonomic activity and reactivity in depression revealed by heart-rate variability measurement during rest and task conditions. Psychiatry Clin. Neurosci. 2014, 68, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinba, T. Major depressive disorder and generalized anxiety disorder show different autonomic dysregulations revealed by heart-rate variability analysis in first-onset drug-naïve patients without comorbidity. Psychiatry Clin. Neurosci. 2017, 71, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.J.; Bahl, J.S.; Buckley, J.D.; Thomson, R.L.; Davison, K. Evidence of altered cardiac autonomic regulation in myalgic encephalomyelitis/chronic fatigue syndrome: A systematic review and meta-analysis. Medicine 2019, 98, e17600. [Google Scholar] [CrossRef]
- Escorihuela, R.M.; Capdevila, L.; Castro, J.R.; Zaragozà, M.C.; Maurel, S.; Alegre, J.; Castro-Marrero, J. Reduced Heart Rate Variability Predicts Fatigue Severity in Individuals with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis. J. Transl. Med. 2020, 18, 4. [Google Scholar] [CrossRef]
- Yamamoto, Y.; LaManca, J.J.; Natelson, B.H. A measure of heart rate variability is sensitive to orthostatic challenge in women with chronic fatigue syndrome. Exp. Biol. Med. 2003, 228, 167–174. [Google Scholar] [CrossRef]
- Beaumont, A.; Burton, A.R.; Lemon, J.; Bennett, B.K.; Lloyd, A.; Vollmer-Conna, U. Reduced cardiac vagal modulation impacts on cognitive performance in chronic fatigue syndrome. PLoS ONE 2012, 7, e49518. [Google Scholar] [CrossRef]
- Kanaya, N.; Hirata, N.; Kurosawa, S.; Nakayama, M.; Namiki, A. Differential effects of propofol and sevoflurane on heart rate variability. Anesthesiology 2003, 98, 34–40. [Google Scholar] [CrossRef]
- Shinba, T.; Kariya, N.; Matsui, Y.; Ozawa, N.; Matsuda, Y.; Yamamoto, K. Decrease in heart rate variability response to task is related to anxiety and depressiveness in normal subjects. Psychiatry Clin. Neurosci. 2008, 62, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Ohtomo, N.; Tanaka, Y.; Tanaka, G.; Yamakoshi, K.; Terachi, S.; Shimamoto, K.; Nakagawa, M.; Satoh, S.; Kuroda, S.; et al. New technique for time series analysis combining the maximum entropy method and non-linear least squares method: Its value in heart rate variability analysis. Med. Biol. Eng. Comput. 1997, 35, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Elghozi, J.L.; Laude, D.; Girard, A. Effects of respiration on blood pressure and heart rate variability in humans. Clin. Exp. Pharmacol. Physiol. 1991, 18, 735–742. [Google Scholar] [CrossRef]
- Shinba, T.; Shinozaki, T.; Kariya, N.; Ebata, K. Random number generation deficit in schizophrenia characterized by oral vs written response modes. Percept. Mot. Skills 2000, 91, 1091–1105. [Google Scholar] [CrossRef]
- Shinba, T.; Murotsu, K.; Usui, Y.; Andow, Y.; Terada, H.; Kariya, N.; Tatebayashi, Y.; Matsuda, Y.; Mugishima, G.; Shinba, Y.; et al. Return-to-Work Screening by Linear Discriminant Analysis of Heart Rate Variability Indices in Depressed Subjects. Sensors 2021, 21, 5177. [Google Scholar] [CrossRef] [PubMed]
- Shinba, T. Characteristic Profiles of Heart Rate Variability in Depression and Anxiety. In Biosignal Processing; Asadpour, V., Karakuş, S., Eds.; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Moss-Morris, R.; Petrie, K.J. Discriminating between chronic fatigue syndrome and depression: A cognitive analysis. Psychol. Med. 2001, 31, 469–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, B.E. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr. 2018, 30, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Strickland, P.; Morriss, R.; Wearden, A.; Deakin, B. A comparison of salivary cortisol in chronic fatigue syndrome, community depression and healthy controls. J. Affect. Disord. 1998, 47, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Robinson, L.J.; Gallagher, P.; Watson, S.; Pearce, R.; Finkelmeyer, A.; Maclachlan, L.; Newton, J.L. Impairments in cognitive performance in chronic fatigue syndrome are common, not related to co-morbid depression but do associate with autonomic dysfunction. PLoS ONE 2019, 14, e0210394. [Google Scholar] [CrossRef]
- Steardo, L., Jr.; Carbone, E.A.; De Filippis, R.; Pisanu, C.; Segura-Garcia, C.; Squassina, A.; De Fazio, P.; Steardo, L. Application of Support Vector Machine on fMRI Data as Biomarkers in Schizophrenia Diagnosis: A Systematic Review. Front. Psychiatry 2020, 11, 588. [Google Scholar] [CrossRef]
- Shinba, T.; Murotsu, K.; Usui, Y.; Andow, Y.; Terada, H.; Takahashi, M.; Takii, R.; Urita, M.; Sakuragawa, S.; Mochizuki, M.; et al. Usefulness of heart rate variability indices in assessing the risk of an unsuccessful return to work after sick leave in depressed patients. Neuropsychopharmacol. Rep. 2020, 40, 239–245. [Google Scholar] [CrossRef]
- Windthorst, P.; Mazurak, N.; Kuske, M.; Hipp, A.; Giel, K.E.; Enck, P.; Nieß, A.; Zipfel, S.; Teufel, M. Heart rate variability biofeedback therapy and graded exercise training in management of chronic fatigue syndrome: An exploratory pilot study. J. Psychosom. Res. 2017, 93, 6–13. [Google Scholar] [CrossRef] [PubMed]
LF | Rest (ms2) | Task (ms2) | After (ms2) | F | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | 780 ± 742 | 517 ± 475 | ↓ | 966 ± 799 | ↑ | 10.9 | |||||
MDD | 266 ± 320 | ▼ | 340 ± 463 | 572 ± 821 | ↑ | 10.2 | |||||
CFS | 601 ± 979 | 469 ± 438 | 802 ± 1328 | ||||||||
F | 6.2 | ||||||||||
HF | |||||||||||
Control | 388 ± 368 | 136 ± 122 | ↓ | 438 ± 392 | 28.6 | ||||||
MDD | 77 ± 105 | ▼ | 86 ± 127 | 165 ± 215 | ↑ | ▼ | 15.0 | ||||
CFS | 214 ± 255 | ▼ | # | 152 ± 165 | 395 ± 587 | ↑ | # | 9.5 | |||
F | 16.6 | 5.8 | |||||||||
LF+HF | |||||||||||
Control | 780 ± 742 | 517 ± 475 | ↓ | 966 ± 799 | 10.9 | ||||||
MDD | 266 ± 320 | ▼ | 340 ± 463 | 572 ± 821 | ↑ | 10.2 | |||||
CFS | 815 ± 1129 | # | 622 ± 588 | # | 1196 ± 1656 | # | 5.4 | ||||
F | 7.2 | 3.7 | 3.6 | ||||||||
LF/HF | |||||||||||
Control | 1.58 ± 1.49 | 4.10 ± 4.11 | ↑ | 1.71 ± 1.37 | 17.4 | ||||||
MDD | 3.34 ± 3.71 | 4.93 ± 5.00 | 3.60 ± 3.73 | ▲ | 3.2 | ||||||
CFS | 4.98 ± 8.99 | ▲ | 4.63 ± 3.98 | 3.19 ± 3.17 | ▲ | ||||||
F | 4.2 | 5.3 | |||||||||
HR | |||||||||||
Control | 73.2 ± 8.51 | 82.2 ± 9.6 | ↑ | 72.4 ± 8.7 | 58.9 | ||||||
MDD | 80.6 ± 12.2 | ▲ | 84.4 ± 13.7 | ↑ | 79.0 ± 11.9 | ↓ | ▲ | 36.6 | |||
CFS | 79.2 ± 10.8 | ▲ | 85.1 ± 13.1 | ↑ | 77.6 ± 12.1 | 36.0 | |||||
F | 6.4 | 4.6 |
D > 0 | D < 0 | Total | Mahalanobis d | p | |
---|---|---|---|---|---|
MDD vs. Control | 2.62961 | <0.001 | |||
MDD | 43 | 6 | 49 | ||
Control | 11 | 35 | 46 | ||
Total | 54 | 41 | |||
sensitivity | specificity | ||||
87.8% | 76.1% | ||||
CFS vs. Control | 6.48905 | <0.001 | |||
CFS | 44 | 0 | 44 | ||
Control | 4 | 42 | 46 | ||
Total | 48 | 42 | |||
sensitivity | specificity | ||||
100% | 91.3% | ||||
MDD vs. CFS | 4.05344 | <0.001 | |||
MDD | 45 | 4 | 49 | ||
CFS | 0 | 44 | 44 | ||
Total | 45 | 48 | |||
sensitivity | specificity | ||||
91.8% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinba, T.; Kuratsune, D.; Shinba, S.; Shinba, Y.; Sun, G.; Matsui, T.; Kuratsune, H. Major Depressive Disorder and Chronic Fatigue Syndrome Show Characteristic Heart Rate Variability Profiles Reflecting Autonomic Dysregulations: Differentiation by Linear Discriminant Analysis. Sensors 2023, 23, 5330. https://doi.org/10.3390/s23115330
Shinba T, Kuratsune D, Shinba S, Shinba Y, Sun G, Matsui T, Kuratsune H. Major Depressive Disorder and Chronic Fatigue Syndrome Show Characteristic Heart Rate Variability Profiles Reflecting Autonomic Dysregulations: Differentiation by Linear Discriminant Analysis. Sensors. 2023; 23(11):5330. https://doi.org/10.3390/s23115330
Chicago/Turabian StyleShinba, Toshikazu, Daisuke Kuratsune, Shuntaro Shinba, Yujiro Shinba, Guanghao Sun, Takemi Matsui, and Hirohiko Kuratsune. 2023. "Major Depressive Disorder and Chronic Fatigue Syndrome Show Characteristic Heart Rate Variability Profiles Reflecting Autonomic Dysregulations: Differentiation by Linear Discriminant Analysis" Sensors 23, no. 11: 5330. https://doi.org/10.3390/s23115330
APA StyleShinba, T., Kuratsune, D., Shinba, S., Shinba, Y., Sun, G., Matsui, T., & Kuratsune, H. (2023). Major Depressive Disorder and Chronic Fatigue Syndrome Show Characteristic Heart Rate Variability Profiles Reflecting Autonomic Dysregulations: Differentiation by Linear Discriminant Analysis. Sensors, 23(11), 5330. https://doi.org/10.3390/s23115330