Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices
Abstract
:1. Introduction
2. Proposed Framework
2.1. Sleep/Wake Estimation
- Change the status from “sleep” to “awake” of <120 consecutive minutes between two epochs with activity amplitudes above the 75th percentile value for all epochs.
- Among connected “sleep” fragments, which can include up to 100 min of mid-waking, only the longest segment is retained; the others are changed to “awake.”
- Find the beginning and end of the fragment of consecutive “sleep,” which is longest when awakenings <4 min are ignored. Any fragments of “sleep” <60 min at both ends of that are corrected to “awake.”
2.2. Pulse Rate Detection with Thresholding Using SQIpr
Algorithm 1: Calculation of SQIpr |
Input: Spectral density dn and Frequency bin bin of PSD Target range fmin and fmax |
Output: SQIpr 1: finit = bin[argmax(dn)] 2: threshold = dn[finit]/3.16 //−5 dB 3: idx_array = where dn > threshold in range [fmin, max (fmax, 2.0 * finit)] 4: if length of idx_array > 1 then 5: bin_std = standard deviation of bin[idx_array] 6: return 1.0–3.0 * bin_std/(max (fmax, 2.0 * finit ) − fmin) 7: else 8: return 1.0 |
2.3. USTHRV Analysis with Thresholding Using SQIhrv
Algorithm 2: Calculation of SQIhrv |
Input: Spectral density dn and Frequency bin bin of PSD Fundamental frequency of heartbeats fMUSIC Margin in frequency bin fmargin |
Output: SQIhrv 1: idx_h1 = bin in range [fMUSIC − fmargin, fMUSIC + fmargin] 2: idx_h2 = bin in range [2.0*fMUSIC − fmargin, 2.0*fMUSIC + fmargin] 3: idx_h3 = bin in range [3.0*fMUSIC − fmargin, 3.0*fMUSIC + fmargin] 4: idx_i1 = bin in range [0.5*fMUSIC + fmargin, fMUSIC − fmargin] 5: idx_i2 = bin in range [fMUSIC + fmargin, 2.0*fMUSIC − fmargin] 6: idx_i3 = bin in range [2.0*fMUSIC + fmargin, 3.0*fMUSIC − fmargin] 7: Aharmonic = sum of dn[idx_h1] + sum of dn[idx_h2] + sum of dn[idx_h3] 8: Anon-harmonic = sum of dn[idx_i1] + sum of dn[idx_i2] + sum of dn[idx_i3] 9: if Anon-harmonic > 0 then 10: return log(1.0 + Aharmonic /Anon-harmonic) 11: else 12: return 0.0 |
3. Experimental Procedure
4. Results
4.1. Sleep Time Estimation
4.2. SQI Thresholding and HRV Indices
4.3. MDD Screening
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronyms | Definition |
AUC | Area Under the Curve |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
ECG | Electrocardiography |
HRV | Heart Rate Variability |
MDD | Major Depressive Disorder |
PPG | Photoplethysmography |
PPI | Peak-to-Peak Interval |
PSD | Power Spectral Density |
REM | Rapid Eye Movement |
ROC | Receiver Operating Characteristic |
SDS | Zung Self-Rated Depression Scale |
SQI | Signal Quality Index |
SQI-FD | Signal Quality Indices in the Frequency Domain |
TST | Total Sleep Time |
USTHRV | Ultra-Short-Term Heart Rate Variability |
VIF | Variance Inflation Factor |
References
- Depression. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 6 January 2023).
- Global Burden of Disease Study 2013 Collaborators. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 301 Acute and Chronic Diseases and Injuries in 188 Countries, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siu, A.L.; US Preventive Services Task Force (USPSTF); Bibbins-Domingo, K.; Grossman, D.C.; Baumann, L.C.; Davidson, K.W.; Ebell, M.; García, F.A.R.; Gillman, M.; Herzstein, J.; et al. Screening for Depression in Adults: US Preventive Services Task Force Recommendation Statement. JAMA 2016, 315, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Cuijpers, P.; van Straten, A.; Smit, F.; Mihalopoulos, C.; Beekman, A. Preventing the Onset of Depressive Disorders: A Meta-Analytic Review of Psychological Interventions. Am. J. Psychiatry 2008, 165, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Wakefield, J.C. DSM-5: An Overview of Changes and Controversies. Clin. Soc. Work J. 2013, 41, 139–154. [Google Scholar] [CrossRef]
- Gilbody, S.; House, A.O.; Sheldon, T.A. Screening and Case Finding Instruments for Depression. Cochrane Database Syst. Rev. 2005, 3, CD002792. [Google Scholar] [CrossRef]
- Kennis, M.; Gerritsen, L.; van Dalen, M.; Williams, A.; Cuijpers, P.; Bockting, C. Prospective Biomarkers of Major Depressive Disorder: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2020, 25, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, H.; Park, B.-J.; Miyazaki, Y. Normative References of Heart Rate Variability and Salivary Alpha-Amylase in a Healthy Young Male Population. J. Physiol. Anthropol. 2012, 31, 9. [Google Scholar] [CrossRef] [Green Version]
- Pedrelli, P.; Fedor, S.; Ghandeharioun, A.; Howe, E.; Ionescu, D.F.; Bhathena, D.; Fisher, L.B.; Cusin, C.; Nyer, M.; Yeung, A.; et al. Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. Front. Psychiatry 2020, 11, 584711. [Google Scholar] [CrossRef]
- Opoku Asare, K.; Moshe, I.; Terhorst, Y.; Vega, J.; Hosio, S.; Baumeister, H.; Pulkki-Råback, L.; Ferreira, D. Mood Ratings and Digital Biomarkers from Smartphone and Wearable Data Differentiates and Predicts Depression Status: A Longitudinal Data Analysis. Pervasive Mob. Comput. 2022, 83, 101621. [Google Scholar] [CrossRef]
- Wang, R.; Wang, W.; da Silva, A.; Huckins, J.F.; Kelley, W.M.; Heatherton, T.F.; Campbell, A.T. Tracking Depression Dynamics in College Students Using Mobile Phone and Wearable Sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 1–26. [Google Scholar] [CrossRef]
- Rohani, D.A.; Faurholt-Jepsen, M.; Kessing, L.V.; Bardram, J.E. Correlations Between Objective Behavioral Features Collected from Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review. JMIR Mhealth Uhealth 2018, 6, e165. [Google Scholar] [CrossRef] [Green Version]
- Saganowski, S.; Kazienko, P.; Jakimów, M.D.P.; Komoszynska, J.; Michalska, W. Review of Consumer Wearables in Emotion, Stress, Meditation, Sleep, and Activity Detection And Analysis. arXiv 2020, arXiv:2005.00093. [Google Scholar]
- Lee, S.; Kim, H.; Park, M.J.; Jeon, H.J. Current Advances in Wearable Devices and Their Sensors in Patients with Depression. Front. Psychiatry 2021, 12, 672347. [Google Scholar] [CrossRef]
- Burton, C.; McKinstry, B.; Szentagotai Tătar, A.; Serrano-Blanco, A.; Pagliari, C.; Wolters, M. Activity Monitoring in Patients with Depression: A Systematic Review. J. Affect. Disord. 2013, 145, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Kishimoto, T.; Kinoshita, S.; Kikuchi, T.; Bun, S.; Kitazawa, M.; Horigome, T.; Tazawa, Y.; Takamiya, A.; Hirano, J.; Mimura, M.; et al. Development of Medical Device Software for the Screening and Assessment of Depression Severity Using Data Collected from a Wristband-Type Wearable Device: SWIFT Study Protocol. medRxiv 2022. [Google Scholar] [CrossRef]
- Peake, J.M.; Kerr, G.; Sullivan, J.P. A Critical Review of Consumer Wearables, Mobile Applications, and Equipment for Providing Biofeedback, Monitoring Stress, and Sleep in Physically Active Populations. Front. Physiol. 2018, 9, 743. [Google Scholar] [CrossRef]
- Can, Y.S.; Chalabianloo, N.; Ekiz, D.; Ersoy, C. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Sensors 2019, 19, 1849. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Lee, S.; Kim, S.; Kim, D.; Kim, H. Depressed Mood Prediction of Elderly People with a Wearable Band. Sensors 2022, 22, 4174. [Google Scholar] [CrossRef]
- Valenza, G.; Nardelli, M.; Lanatà, A.; Gentili, C.; Bertschy, G.; Paradiso, R.; Scilingo, E.P. Wearable Monitoring for Mood Recognition in Bipolar Disorder Based on History-Dependent Long-Term Heart Rate Variability Analysis. IEEE J. Biomed. Health Inform. 2014, 18, 1625–1635. [Google Scholar] [CrossRef]
- Ishaque, S.; Khan, N.; Krishnan, S. Trends in Heart-Rate Variability Signal Analysis. Front. Digit. Health 2021, 3, 639444. [Google Scholar] [CrossRef]
- Koch, C.; Wilhelm, M.; Salzmann, S.; Rief, W.; Euteneuer, F. A Meta-Analysis of Heart Rate Variability in Major Depression. Psychol. Med. 2019, 49, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Udupa, K.; Sathyaprabha, T.N.; Thirthalli, J.; Kishore, K.R.; Lavekar, G.S.; Raju, T.R.; Gangadhar, B.N. Alteration of Cardiac Autonomic Functions in Patients with Major Depression: A Study Using Heart Rate Variability Measures. J. Affect. Disord. 2007, 100, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Gorman, J.M.; Sloan, R.P. Heart Rate Variability in Depressive and Anxiety Disorders. Am. Heart J. 2000, 140, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Shinba, T. Altered Autonomic Activity and Reactivity in Depression Revealed by Heart-Rate Variability Measurement during Rest and Task Conditions. Psychiatry Clin. Neurosci. 2014, 68, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Sarlon, J.; Staniloiu, A.; Kordon, A. Heart Rate Variability Changes in Patients with Major Depressive Disorder: Related to Confounding Factors, Not to Symptom Severity? Front. Neurosci. 2021, 15, 675624. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, B.; Zhan, C.A. Short-Term HRV in Young Adults for Momentary Assessment of Acute Mental Stress. Biomed. Signal Process. Control 2020, 57, 101746. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S.; Felmingham, K.L.; Matthews, S.; Jelinek, H.F. Depression, Comorbid Anxiety Disorders, and Heart Rate Variability in Physically Healthy, Unmedicated Patients: Implications for Cardiovascular Risk. PLoS ONE 2012, 7, e30777. [Google Scholar] [CrossRef]
- Carney, R.M.; Blumenthal, J.A.; Stein, P.K.; Watkins, L.; Catellier, D.; Berkman, L.F.; Czajkowski, S.M.; O’Connor, C.; Stone, P.H.; Freedland, K.E. Depression, Heart Rate Variability, and Acute Myocardial Infarction. Circulation 2001, 104, 2024–2028. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Shinba, T.; Kirimoto, T.; Matsui, T. An Objective Screening Method for Major Depressive Disorder Using Logistic Regression Analysis of Heart Rate Variability Data Obtained in a Mental Task Paradigm. Front. Psychiatry 2016, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Matsui, T.; Shinba, T.; Sun, G. The Development of a Novel High-Precision Major Depressive Disorder Screening System Using Transient Autonomic Responses Induced by Dual Mental Tasks. J. Med. Eng. Technol. 2018, 42, 121–127. [Google Scholar] [CrossRef]
- Kuang, D.; Yang, R.; Chen, X.; Lao, G.; Wu, F.; Huang, X.; Lv, R.; Zhang, L.; Song, C.; Ou, S. Depression Recognition According to Heart Rate Variability Using Bayesian Networks. J. Psychiatr. Res. 2017, 95, 282–287. [Google Scholar] [CrossRef]
- Posada-Quintero, H.F.; Delisle-Rodríguez, D.; Cuadra-Sanz, M.B.; Fernández de la Vara-Prieto, R.R. Evaluation of Pulse Rate Variability Obtained by the Pulse Onsets of the Photoplethysmographic Signal. Physiol. Meas. 2013, 34, 179–187. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Hsu, F.-W.; Lee, R.-G.; Lin, R. Correlation Analysis of Heart Rate Variability between PPG and ECG for Wearable Devices in Different Postures. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2957–2962. [Google Scholar]
- Lam, E.; Aratia, S.; Wang, J.; Tung, J. Measuring Heart Rate Variability in Free-Living Conditions Using Consumer-Grade Photoplethysmography: Validation Study. JMIR Biomed. Eng. 2020, 5, e17355. [Google Scholar] [CrossRef]
- Schäfer, A.; Vagedes, J. How Accurate Is Pulse Rate Variability as an Estimate of Heart Rate Variability? A Review on Studies Comparing Photoplethysmographic Technology with an Electrocardiogram. Int. J. Cardiol. 2013, 166, 15–29. [Google Scholar] [CrossRef]
- Dagdanpurev, S.; Sun, G.; Shinba, T.; Kobayashi, M.; Kariya, N.; Choimaa, L.; Batsuuri, S.; Kim, S.; Suzuki, S.; Matsui, T. Development and Clinical Application of a Novel Autonomic Transient Response-Based Screening System for Major Depressive Disorder Using a Fingertip Photoplethysmographic Sensor. Front Bioeng Biotechnol 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Unursaikhan, B.; Tanaka, N.; Sun, G.; Watanabe, S.; Yoshii, M.; Funahashi, K.; Sekimoto, F.; Hayashibara, F.; Yoshizawa, Y.; Choimaa, L.; et al. Development of a Novel Web Camera-Based Contact-Free Major Depressive Disorder Screening System Using Autonomic Nervous Responses Induced by a Mental Task and Its Clinical Application. Front. Physiol. 2021, 12, 642986. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Kyriacou, P.A.; Allen, J. Photoplethysmography: Technology, Signal Analysis and Applications; Academic Press: Cambridge, MA, USA, 2021; ISBN 9780128235256. [Google Scholar]
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-Ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Coté, G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef]
- Elgendi, M. Optimal Signal Quality Index for Photoplethysmogram Signals. Bioengineering 2016, 3, 21. [Google Scholar] [CrossRef] [Green Version]
- Neshitov, A.; Tyapochkin, K.; Smorodnikova, E.; Pravdin, P. Wavelet Analysis and Self-Similarity of Photoplethysmography Signals for HRV Estimation and Quality Assessment. Sensors 2021, 21, 6798. [Google Scholar] [CrossRef]
- Tazawa, Y.; Liang, K.-C.; Yoshimura, M.; Kitazawa, M.; Kaise, Y.; Takamiya, A.; Kishi, A.; Horigome, T.; Mitsukura, Y.; Mimura, M.; et al. Evaluating Depression with Multimodal Wristband-Type Wearable Device: Screening and Assessing Patient Severity Utilizing Machine-Learning. Heliyon 2020, 6, e03274. [Google Scholar] [CrossRef] [PubMed]
- Roh, T.; Hong, S.; Yoo, H.-J. Wearable Depression Monitoring System with Heart-Rate Variability. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 562–565. [Google Scholar]
- Baek, H.J.; Cho, C.-H.; Cho, J.; Woo, J.-M. Reliability of Ultra-Short-Term Analysis as a Surrogate of Standard 5-Min Analysis of Heart Rate Variability. Telemed. J. eHealth 2015, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, F.; Meehan, Z.M.; Zerr, C.L. A Critical Review of Ultra-Short-Term Heart Rate Variability Norms Research. Front. Neurosci. 2020, 14, 594880. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Hayano, J.; Yuda, E. Assessment of Autonomic Function by Long-Term Heart Rate Variability: Beyond the Classical Framework of LF and HF Measurements. J. Physiol. Anthropol. 2021, 40, 21. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Kripke, D.F.; Hahn, E.K.; Grizas, A.P.; Wadiak, K.H.; Loving, R.T.; Poceta, J.S.; Shadan, F.F.; Cronin, J.W.; Kline, L.E. Wrist Actigraphic Scoring for Sleep Laboratory Patients: Algorithm Development. J. Sleep Res. 2010, 19, 612–619. [Google Scholar] [CrossRef]
- Palotti, J.; Mall, R.; Aupetit, M.; Rueschman, M.; Singh, M.; Sathyanarayana, A.; Taheri, S.; Fernandez-Luque, L. Benchmark on a Large Cohort for Sleep-Wake Classification with Machine Learning Techniques. NPJ Digit. Med. 2019, 2, 50. [Google Scholar] [CrossRef] [Green Version]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic Sleep/Wake Identification from Wrist Activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Barabell, A.J.; Capon, J.; DeLong, D.F.; Johnson, J.R.; Senne, K.D. Performance Comparison of Superresolution Array Processing Algorithms; Massachusetts Institute of Technology, Lincoln Laboratory: Lexington, MA, USA, 1998. [Google Scholar]
- Welch, P. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Seok, H.S.; Shin, H. Is Ultra-Short-Term Heart Rate Variability Valid in Non-Static Conditions? Front. Physiol. 2021, 12, 596060. [Google Scholar] [CrossRef]
- Ellis, R.J.; Zhu, B.; Koenig, J.; Thayer, J.F.; Wang, Y. A Careful Look at ECG Sampling Frequency and R-Peak Interpolation on Short-Term Measures of Heart Rate Variability. Physiol. Meas. 2015, 36, 1827–1852. [Google Scholar] [CrossRef] [Green Version]
- Pelaez-Coca, M.D.; Hernando, A.; Lazaro, J.; Gil, E. Impact of the PPG Sampling Rate in the Pulse Rate Variability Indices Evaluating Several Fiducial Points in Different Pulse Waveforms. IEEE J. Biomed. Health Inform. 2022, 26, 539–549. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Heathers, J.A.J. Everything Hertz: Methodological Issues in Short-Term Frequency-Domain HRV. Front. Physiol. 2014, 5, 177. [Google Scholar] [CrossRef] [Green Version]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Wasserman, W. Applied Linear Regression Models; McGraw-Hill: Chicago, IL, USA, 2009. [Google Scholar]
- Jokelainen, J.; Timonen, M.; Keinänen-Kiukaanniemi, S.; Härkönen, P.; Jurvelin, H.; Suija, K. Validation of the Zung Self-Rating Depression Scale (SDS) in Older Adults. Scand. J. Prim. Health Care 2019, 37, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, D.A.; Scott, N. Norms for Zung’s Self-Rating Anxiety Scale. BMC Psychiatry 2020, 20, 90. [Google Scholar] [CrossRef] [Green Version]
- Shinba, T.; Murotsu, K.; Usui, Y.; Andow, Y.; Terada, H.; Takahashi, M.; Takii, R.; Urita, M.; Sakuragawa, S.; Mochizuki, M.; et al. Usefulness of Heart Rate Variability Indices in Assessing the Risk of an Unsuccessful Return to Work after Sick Leave in Depressed Patients. Neuropsychopharmacol. Rep. 2020, 40, 239–245. [Google Scholar] [CrossRef]
- Shinba, T.; Murotsu, K.; Usui, Y.; Andow, Y.; Terada, H.; Kariya, N.; Tatebayashi, Y.; Matsuda, Y.; Mugishima, G.; Shinba, Y.; et al. Return-to-Work Screening by Linear Discriminant Analysis of Heart Rate Variability Indices in Depressed Subjects. Sensors 2021, 21, 5177. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, Z.; Hua, L.; Jiang, H.; Tian, S.; Han, Y.; Lin, P.; Wang, H.; Lu, Q.; Yao, Z. Decreased Task-Related HRV Is Associated with Inhibitory Dysfunction Through Functional Inter-Region Connectivity of PFC in Major Depressive Disorder. Front. Psychiatry 2019, 10, 989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, M.; Ray, L.B.; Bujaki, B.; Parvaresh, A.; Palamarchuk, I.; De Koninck, J.; Douglass, A.; Lee, E.K.; Soucy, L.J.; Fogel, S.; et al. Using Heart Rate Profiles during Sleep as a Biomarker of Depression. BMC Psychiatry 2019, 19, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, H.B.; Yoon, H.; Choi, S.H.; Choi, J.-W.; Lee, Y.J.; Park, K.S. Heart Rate Variability Changes in Major Depressive Disorder during Sleep: Fractal Index Correlates with BDI Score during REM Sleep. Psychiatry Res. 2019, 271, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Huthart, S.; Elgendi, M.; Zheng, D.; Stansby, G.; Allen, J. Advancing PPG Signal Quality and Know-How Through Knowledge Translation-From Experts to Student and Researcher. Front. Digit. Health 2020, 2, 619692. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
Method | Index | Unit | Description |
---|---|---|---|
Time domain | RMSSD | ms | Root mean squared successive differences of PPI |
SDNN | ms | Standard deviation of PPI | |
Frequency domain | LF | ms2 | Absolute power of the low-frequency band (0.04–0.15 Hz) |
HF | ms2 | Absolute power of the high-frequency band (0.15–0.40 Hz) | |
LF/HF | Ratio between LF and HF | ||
TP | ms2 | Total power of all frequency bands |
Total | Healthy Adults | MDD Patients | p-Value | |
---|---|---|---|---|
n | 69 | 29 | 40 | |
Male (%) | 15 (51.7) | 18 (45.0) | N.S. (χ2) | |
Female (%) | 14 (48.3) | 22 (55.0) | ||
Age in years, mean (SD) | 35.6 (11.3) | 31.9 (13.0) | 37.5 (8.8) | N.S. |
Self-reported sleep duration (min) | 448.0 (95.8) | 426.7 (94.3) | 463.5 (95.0) | N.S. |
SDS scores, mean (SD) | 40.6 (10.2) | 34.0 (8.6) | 45.7 (8.2) | <0.001 |
Total (%) | Healthy Adults (%) | MDD Patients (%) | |
---|---|---|---|
Awake period | |||
SQIpr | 41.1 | 46.0 | 36.9 |
SQIpr and SQIhrv | 22.7 | 26.1 | 19.8 |
Sleep period | |||
SQIpr | 88.0 | 87.5 | 88.4 |
SQIpr and SQIhrv | 83.9 | 84.5 | 83.4 |
Without SQIpr | With SQIpr | Reduction | |
Mean CPU time (s) | 139.96 | 79.47 | 45.9% |
SD | 5.4 | 19.2 | 13.3% |
HRV Index | Phase | Healthy Adults | MDD Patients | ||
---|---|---|---|---|---|
Without SQI-FD | With SQI-FD | Without SQI-FD | With SQI-FD | ||
RMSSD (ms) | P1 | 100.6 | 84.5 | 91.2 | 69.0 ** |
P2 | 62.1 | 60.0 | 52.1 * | 46.4 ** | |
P3 | 65.5 | 64.1 | 46.0 ** | 40.4 *** | |
P4 | 72.3 | 70.0 | 50.9 *** | 48.0 *** | |
P5 | 99.4 | 81.5 | 92.7 | 70.8 *** | |
SDNN (ms) | P1 | 91.8 | 78.2 | 79.6 ** | 62.6 *** |
P2 | 64.0 | 60.6 | 53.3 * | 46.4 ** | |
P3 | 64.4 | 61.3 | 54.1 | 47.8 ** | |
P4 | 72.9 | 69.5 | 57.9 ** | 53.8 *** | |
P5 | 94.0 | 80.6 | 83.1 *** | 65.4 *** | |
LF (ms2) | P1 | 1727 | 1369 | 1006 *** | 689 *** |
P2 | 850 | 785 | 511 * | 417 ** | |
P3 | 718 | 660 | 540 | 444 * | |
P4 | 981 | 911 | 548 ** | 492 *** | |
P5 | 1594 | 1276 | 1119 *** | 726 *** | |
HF (ms2) | P1 | 1833 | 1326 | 1229 ** | 748 *** |
P2 | 1045 | 1014 | 625 ** | 511 ** | |
P3 | 1279 | 1257 | 497 *** | 405 *** | |
P4 | 1426 | 1386 | 586 *** | 550 *** | |
P5 | 1653 | 1208 | 1429 ** | 876 *** | |
LF/HF | P1 | 1.22 | 1.41 | 1.20 | 1.41 |
P2 | 1.25 | 1.21 | 1.50 | 1.52 | |
P3 | 0.98 | 0.93 | 1.72 ** | 1.72 *** | |
P4 | 1.13 | 1.11 | 1.44 | 1.41 | |
P5 | 1.19 | 1.40 | 1.12 | 1.22 | |
TP (ms2) | P1 | 4175 | 3139 | 2977 ** | 1834 *** |
P2 | 2275 | 2130 | 1519 * | 1217 ** | |
P3 | 2391 | 2270 | 1354 ** | 1061 ** | |
P4 | 2863 | 2710 | 1531 *** | 1384 *** | |
P5 | 3862 | 2804 | 3162 ** | 1891 *** |
Accuracy | Sensitivity | Precision | NPV | F1 Score | MCC | |
---|---|---|---|---|---|---|
Without SQI-FD | 0.772 | 0.803 | 0.733 | 0.750 | 0.796 | 0.537 |
With SQI-FD | 0.859 | 0.873 | 0.840 | 0.842 | 0.872 | 0.714 |
Awake period | 0.816 | 0.834 | 0.794 | 0.794 | 0.834 | 0.628 |
Sleep period | 0.798 | 0.828 | 0.760 | 0.781 | 0.819 | 0.590 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, S.; Hiratsuka, T.; Hasegawa, K.; Watanabe, K.; Obara, Y.; Kariya, N.; Shinba, T.; Matsui, T. Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. Sensors 2023, 23, 3867. https://doi.org/10.3390/s23083867
Sato S, Hiratsuka T, Hasegawa K, Watanabe K, Obara Y, Kariya N, Shinba T, Matsui T. Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. Sensors. 2023; 23(8):3867. https://doi.org/10.3390/s23083867
Chicago/Turabian StyleSato, Shohei, Takuma Hiratsuka, Kenya Hasegawa, Keisuke Watanabe, Yusuke Obara, Nobutoshi Kariya, Toshikazu Shinba, and Takemi Matsui. 2023. "Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices" Sensors 23, no. 8: 3867. https://doi.org/10.3390/s23083867
APA StyleSato, S., Hiratsuka, T., Hasegawa, K., Watanabe, K., Obara, Y., Kariya, N., Shinba, T., & Matsui, T. (2023). Screening for Major Depressive Disorder Using a Wearable Ultra-Short-Term HRV Monitor and Signal Quality Indices. Sensors, 23(8), 3867. https://doi.org/10.3390/s23083867