A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception
Abstract
:1. Introduction
2. Theoretical Model
3. Results and Discussions
3.1. Experimental System
3.2. Discussions
3.2.1. When the Flow Direction Is Parallel to the x-Axis (Condition No. 1)
3.2.2. When the Flow Direction Is at an Angle of 45° to the x-Axis (Condition No. 2)
3.2.3. Variable Flow Direction Condition (Condition No. 3)
4. Implications and Prospects
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Acronyms and symbols | Representative meaning | Unit |
MTEG | Micro Thermoelectric Generator | / |
ROV | Remote Operated Vehicle | / |
AUV | Autonomous Underwater Vehicle | / |
ADCP | Acoustic Doppler Current Profiler | / |
ADV | Acoustic Doppler Velocity Meter | / |
TSP | Traveling Salesman Problem | / |
MEMS | Microelectron Mechanical Systems | / |
Thermal tactile sensor No. 1 | / | |
Thermal tactile sensor No. 2 | / | |
Thermal tactile sensor No. 3 | / | |
Thermal tactile sensor No. 4 | / | |
Output voltage of MTEG | V | |
Flow velocity | m/s | |
A constant defined by the characteristics of MTEG | V | |
A constant defined by the characteristics of MTEG | V/(m/s) | |
Velocity of the water flow over | m/s | |
Velocity of the water flow over | m/s | |
Velocity of the water flow over | m/s | |
Velocity of the water flow over | m/s |
References
- Gao, D.; Wang, T.; Qin, F.; Zhang, S.; Jing, J.; Yang, J. Design, fabrication, and testing of a maneuverable underwater vehicle with a hybrid propulsor. Biomim. Intell. Robot. 2022, 2, 100072. [Google Scholar] [CrossRef]
- Long, C.; Hu, M.; Qin, X.; Bian, Y. Hierarchical trajectory tracking control for ROVs subject to disturbances and parametric uncertainties. Ocean. Eng. 2022, 266, 112733. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, M.; Li, D. A double-loop control framework for AUV trajectory tracking under model parameters uncertainties and time-varying currents. Ocean Eng. 2022, 265, 112566. [Google Scholar] [CrossRef]
- Boyuan, Y.; Chu, V.H. The front runner in roll waves produced by local disturbances. J. Fluid Mech. 2022, 932, A42. [Google Scholar]
- Zin, H.T.; Hiroyoshi, S.; Daniel, G.-V. On the theory and application of absolute coordinates-based multibody modelling of the rigid–flexible coupled dynamics of a deep-sea ROV-TMS (tether management system) integrated model. Ocean Eng. 2022, 258, 111748. [Google Scholar]
- Mohsan, S.A.H.; Khan, M.A.; Mazinani, A.; Alsharif, M.H.; Cho, H.S. Enabling Underwater Wireless Power Transfer towards Sixth Generation (6G) Wireless Networks: Opportunities, Recent Advances, and Technical Challenges. J. Mar. Sci. Eng. 2022, 10, 1282. [Google Scholar] [CrossRef]
- Wu, L.; Li, S.; Feng, X.; Jiang, H.; Zhang, X.; Hu, W. Unsteady simulation of AUVs approaching seafloor by self-propulsion using multi-block hybrid dynamic grid method. J. Fluids Struct. 2022, 114, 103728. [Google Scholar] [CrossRef]
- Lin, Y.H.; Siddall, R.; Schwab, F.; Fukushima, T.; Banerjee, H.; Baek, Y.; Vogt, D.; Park, Y.-L.; Jusufi, A. Modeling and Control of a Soft Robotic Fish with Integrated Soft Sensing. Adv. Intell. Syst. 2021, 5, 2000244. [Google Scholar] [CrossRef]
- Lv, T.; Zhang, M.; Wang, Y. Prediction-Based Region Tracking Control Scheme for Autonomous Underwater Vehicle. J. Mar. Sci. Eng. 2022, 10, 775. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, Y.; Zhu, D.; Zhang, M. Observer-based adaptive neural sliding mode trajectory tracking control for remotely operated vehicles with thruster constraints. Trans. Inst. Meas. Control 2021, 43, 2960–2971. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, M.; Yao, F.; Yin, B.; Chen, J. Barrier Lyapunov function based adaptive region tracking control for underwater vehicles with thruster saturation and dead zone. J. Frankl. Inst. 2021, 358, 5820–5844. [Google Scholar] [CrossRef]
- Li, C.; Huang, X.; Ding, J.; Song, K.; Lu, S. Global path planning based on a bidirectional alternating search A* algorithm for mobile robots. Comput. Ind. Eng. 2022, 168, 108123. [Google Scholar] [CrossRef]
- Loder, J.W.; Hamilton, J.M. Degradation of some mechanical current meter measurements by high-frequency mooring or wave motion. IEEE J. Ocean. Eng. A J. Devoted Appl. Electr. Electron. Eng. Ocean. Environ. 1991, 16, 343–349. [Google Scholar] [CrossRef]
- MacVicar, B.J.; Beaulieu, E.; Champagne, V.; Roy, A.G. Measuring water velocity in highly turbulent flows: Field tests of an electromagnetic current meter (ECM) and an acoustic Doppler velocimeter (ADV). Earth Surf. Process. Landf. 2007, 32, 1412–1432. [Google Scholar] [CrossRef]
- Llaban, A.B.; Ella, V.B. Conventional and sensor-based streamflow data acquisition system for sustainable water resources management and agricultural applications: An extensive review of literature. IOP Conf. Ser. Earth Environ. Sci. 2022, 1038, 012040. [Google Scholar] [CrossRef]
- Dunn, M.; Zedel, L. Evaluation of discrete target detection with an acoustic Doppler current profiler. Limnol. Oceanogr. Methods 2022, 20, 249–259. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, S.; Lee, S.; Byun, J.; An, H. Application of Stage-Fall-Discharge Rating Curves to a Reservoir Based on Acoustic Doppler Velocity Meter Measurement Data. Water 2021, 13, 2443. [Google Scholar] [CrossRef]
- Xingyi, H.U. Application of Venturi Method in Calculation of River Flow. J. China Hydrol. 2019, 39, 72–75. [Google Scholar]
- Bae, H.S.; Kim, W.K.; Son, S.U.; Kim, W.S.; Park, J.S. An Estimation of the Backscattering Strength of Artificial Bubbles Using an Acoustic Doppler Current Profiler. Sensors 2022, 22, 1812. [Google Scholar] [CrossRef]
- Goswami, A. Acoustic Doppler Current Profiler to Measure Current Velocity. J. Oceanogr. Mar. Res. 2021, 9, 1–3. [Google Scholar]
- Liu, C.; Zhao, K.; Fan, Y.; Gao, Y.; Zhou, Z.; Li, M.; Gao, Y.; Han, Z.; Xu, M.; Pan, X. A flexible thermoelectric film based on Bi2Te3 for wearable applications. Funct. Mater. Lett. 2022, 15, 2251005. [Google Scholar] [CrossRef]
- Liu, C.X.; Ye, W.X.; Li, H.A.; Liu, J.H.; Zhao, C.; Mao, Z.F.; Pan, X.X. Experimental study on cascade utilization of ship’s waste heat based on TEG-ORC combined cycle. Int. J. Energy Res. 2021, 45, 4184–4196. [Google Scholar] [CrossRef]
- Liu, C.; Shan, B.; Chen, N.; Liu, J.; Zhou, Z.; Wang, Q.; Gao, Y.; Han, Z.; Liu, Z.; Xu, M.; et al. A material recognition method for underwater application based on Micro Thermoelectric Generator. Sens. Actuators A Phys. 2022, 339, 113503. [Google Scholar] [CrossRef]
- Liu, C.; Qu, G.; Shan, B.; Aranda, R.; Chen, N.; Li, H.; Zhou, Z.; Yu, T.; Wang, C.; Mi, J.; et al. Underwater Hybrid Energy Harvesting based on TENG-MTEG for Self-powered Marine Mammal Condition Monitoring System. Mater. Today Sustain. 2023, 21, 100301. [Google Scholar] [CrossRef]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Silvestri, S.; Schena, E. Micromachined flow sensors in biomedical applications. Micromachines 2012, 3, 225–243. [Google Scholar] [CrossRef]
- Ye, C.J.; Huang, H.L.; Rao, X.; Chen, S. Analysis of the flow properties on a moving flat plate impinged by an inclined water jet flow. Chin. J. Hydrodyn. 2015. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci. 2017, 89, 189–198. [Google Scholar] [CrossRef]
- Chen, X.X.; Wang, C.; Shi, W.D.; Zhang, Y.C. Numerical simulation of submerged impinging water jet at different impact angles. J. Drain. Irrig. Mach. Eng. JDIME 2020, 38, 658–662, 669. [Google Scholar]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Nonaka, M.; Xie, S.P. Covariations of Sea Surface Temperature and Wind over the Kuroshio and Its Extension: Evidence for Ocean-to-Atmosphere Feedback. J. Clim. 2003, 16, 1404–1413. [Google Scholar] [CrossRef]
- Li, G.; Zhu, Z.; Zheng, Y.; Guo, W.; Tang, Y. Development of a powerful hybrid micro thermoelectric generator based on an ultrahigh capacity miniature combustor. Appl. Therm. Eng. 2022, 206, 118039. [Google Scholar] [CrossRef]
- Tao, W.Q. Heat Transfer, 5th ed.; McGraw Hill: New York, NY, USA, 2019. [Google Scholar]
Sensor Type | Paragraph | Working Principle | Merits | Defects |
---|---|---|---|---|
Mechanical Current Meter | Mechanical transmission | Easy to be manufactured and maintained | Easy to be influenced by water flow disturbance | |
Electromagnetic Current Meter | Faraday law of electromagnetic induction | Long service life, variable sampling method | Vulnerable to electromagnetic interference | |
Acoustic Current Meter | Doppler principle | High accuracy, wide measuring range | Hard to be maintained | |
MEMS Thermal Flow Senor | Heat conduction and heat convection | High accuracy, small volume, easy to be installed | Hard to be applied underwater | |
Thermal Tactile Underwater Flow Direction Sensor | Heat conduction, heat convection, and thermoelectric effect | Cheap, small volume, easy to be installed and maintained | Low accuracy, narrow measuring range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Chen, N.; Xing, G.; Chen, R.; Shao, T.; Shan, B.; Pan, Y.; Xu, M. A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception. Sensors 2023, 23, 5375. https://doi.org/10.3390/s23125375
Liu C, Chen N, Xing G, Chen R, Shao T, Shan B, Pan Y, Xu M. A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception. Sensors. 2023; 23(12):5375. https://doi.org/10.3390/s23125375
Chicago/Turabian StyleLiu, Changxin, Nanxi Chen, Guangyi Xing, Runhe Chen, Tong Shao, Baichuan Shan, Yilin Pan, and Minyi Xu. 2023. "A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception" Sensors 23, no. 12: 5375. https://doi.org/10.3390/s23125375
APA StyleLiu, C., Chen, N., Xing, G., Chen, R., Shao, T., Shan, B., Pan, Y., & Xu, M. (2023). A Novel Thermal Tactile Sensor Based on Micro Thermoelectric Generator for Underwater Flow Direction Perception. Sensors, 23(12), 5375. https://doi.org/10.3390/s23125375