Electronic Design for Wearables Devices Addressed from a Gender Perspective: Cross-Influences and a Methodological Proposal
Abstract
:1. Introduction
- An analysis of the different aspects to consider in the design of a wearable device and the implications they have in developing an inclusive design from a gender point of view.
- A proposal of a design methodology that incorporates the gender perspective from the electronics point of view for a wearable device. We also analyze how they affect each other and the intra-implications and the cross-implications.
- A use case of application of the methodology presented for a wearable device design to protect gender-based violence victims.
2. Analysis for Gender Perspective Inclusion
2.1. Functionality and Application
2.2. Sensors
2.2.1. Temperature Sensor
2.2.2. Heart Rate Sensor
2.2.3. Galvanic Skin Response (GSR)
2.2.4. Electrocardiogram (ECG)
2.2.5. Electroencephalogram (EEG)
2.2.6. Electromyogram (EMG)
2.2.7. Respiration
2.3. Central Processing Unit (CPU) and Memory
2.4. Power Supply
2.5. Communication
2.6. User Interface (UI)
2.7. Location and Wearability
2.8. Design, Aesthetics, Shape, Form Factor and Materials
2.9. Conclusions
3. Methodology Proposal
3.1. Interdependencies
3.2. Methodology Proposal
3.2.1. User Validation
3.2.2. Methodology Description
4. Use Case: Bindi
4.1. Motivation
4.2. People
4.3. Procedure
4.4. Wearable Design
5. Conclusions
- We have analyzed both the social and anatomical implications that should be considered when designing a wearable. This analysis has been made placing the users at the center, from the necessity definition, the application to implement, and the implications of the decision of every module of the wearable: sensors, processing unit and memory, power supply, communications, user interface, location, wearability, materials and form factor. This analysis also aspires to be a helpful instrument for assessing and revising a gender perspective in existing wearables to improve them for everybody, leading to better performance and a higher adherence.
- Together with the analysis, as the main contribution of this work, we present a methodology to consider a gender perspective in the design cycle to address the gender perspective systematically. For that purpose, we previously examined the dependencies and relations of every module to keep them in mind for the presented methodology.
- Finally, the methodology is validated through a use case. The proposed system is BINDI, a device for helping in the fight against gender-based violence. We follow the stages of the proposed methodology for the electronic design to improve the process, validating it and assessing every step with final users and experts working with gender-based violence victims.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Davison, K.; Queen, R.; Lau, F.; Antonio, M. Culturally Competent Gender, Sex, and Sexual Orientation Information Practices and Electronic Health Records: Rapid Review. JMIR Med. Inform. 2021, 9, e25467. [Google Scholar] [CrossRef] [PubMed]
- Gilman, C.P. Our Androcentric Culture, or the Man Made World; Source Book Press: Naperville, IL, USA, 1911. [Google Scholar]
- Bailey, A.H.; LaFrance, M.; Dovidio, J.F. Is Man the Measure of All Things? A Social Cognitive Account of Androcentrism. Personal. Soc. Psychol. Rev. 2019, 23, 307–331. [Google Scholar] [CrossRef] [PubMed]
- Ashford, R. Responsive and Emotive Wearable Technology: Physiological Data, Devices and Communication. Ph.D. Dissertation, Goldsmiths, University of London, London, UK, 2018. [Google Scholar] [CrossRef]
- Cifor, M.; Garcia, P. Inscribing Gender: A Duoethnographic Examination of Gendered Values and Practices in Fitness Tracker Design. In Proceedings of the 52nd Hawaii International Conference on System Sciences, Grand Wailea, Maui, HI, USA, 8–11 January 2019. [Google Scholar]
- Sørensen, K.H. Towards a Feminized Technology? Gendered Values in the Construction of Technology. Soc. Stud. Sci. 1992, 22, 5–31. [Google Scholar] [CrossRef]
- Esfahani, B.K.; Sareh, P. Insights into the Role of Gender in Aesthetic Design: A Participatory Study on the Design of Digital Health Wearables. Int. J. Interact. Des. Manuf. 2021, 15, 173–185. [Google Scholar] [CrossRef]
- Wissinger, E. Wearable Tech, Bodies, and Gender. Sociol. Compass 2017, 11, e12514. [Google Scholar] [CrossRef]
- Sanders, R. Self-Tracking in the Digital Era: Biopower, Patriarchy, and the New Biometric Body Projects. Body Soc. 2017, 23, 36–63. [Google Scholar] [CrossRef]
- Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Networks: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [Google Scholar] [CrossRef]
- Seneviratne, S.; Hu, Y.; Nguyen, T.; Lan, G.; Khalifa, S.; Thilakarathna, K.; Hassan, M.; Seneviratne, A. A Survey of Wearable Devices and Challenges. IEEE Commun. Surv. Tutor. 2017, 19, 2573–2620. [Google Scholar] [CrossRef]
- Maragiannis, A.; Ashford, R. Diversity and Inclusivity in the Age of Wearables: A Buzzword, a Myth, an Uncertain Reality. Body Space Technol. 2019, 18, 198. [Google Scholar] [CrossRef]
- Oudshoorn, N.; Rommes, E.; Stienstra, M. Configuring the User as Everybody: Gender and Design Cultures in Information and Communication Technologies. Sci. Technol. Hum. Values 2004, 29, 30–63. [Google Scholar] [CrossRef]
- Wajcman, J. Feminism Confronts Technology; Pennsylvania State University Press: University Park, PA, USA, 1991; ISBN 978-0-7456-0778-8. [Google Scholar]
- Leavy, S.; Siapera, E.; O’Sullivan, B. Ethical Data Curation for AI: An Approach Based on Feminist Epistemology and Critical Theories of Race. In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, 19–21 May 2021; ACM: New York, NY, USA, 2021; pp. 695–703. [Google Scholar] [CrossRef]
- Chaudhuri, T.; Zhai, D.; Soh, Y.C.; Li, H.; Xie, L. Random Forest Based Thermal Comfort Prediction from Gender-Specific Physiological Parameters Using Wearable Sensing Technology. Energy Build. 2018, 166, 391–406. [Google Scholar] [CrossRef]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nine Decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Cosoli, G.; Antognoli, L.; Scalise, L. Methods for the Metrological Characterization of Wearable Devices for the Measurement of Physiological Signals: State of the Art and Future Challenges. MethodsX 2023, 10, 102038. [Google Scholar] [CrossRef] [PubMed]
- Neves, E.B.; Salamunes, A.C.C.; De Oliveira, R.M.; Stadnik, A.M.W. Effect of Body Fat and Gender on Body Temperature Distribution. J. Therm. Biol. 2017, 70, 1–8. [Google Scholar] [CrossRef]
- Chudecka, M.; Lubkowska, A. Thermal Maps of Young Women and Men. Infrared Phys. Technol. 2015, 69, 81–87. [Google Scholar] [CrossRef]
- Xiong, J.; Lian, Z.; Zhou, X.; You, J.; Lin, Y. Investigation of Gender Difference in Human Response to Temperature Step Changes. Physiol. Behav. 2015, 151, 426–440. [Google Scholar] [CrossRef] [PubMed]
- Vellei, M.; De Dear, R.; Le Dreau, J.; Nicolle, J.; Rendu, M.; Abadie, M.; Michaux, G.; Doya, M. Dynamic Thermal Perception under Whole-Body Cyclical Conditions: Thermal Overshoot and Thermal Habituation. Build. Environ. 2022, 226, 109677. [Google Scholar] [CrossRef]
- Baker, F.C.; Siboza, F.; Fuller, A. Temperature Regulation in Women: Effects of the Menstrual Cycle. Temperature 2020, 7, 226–262. [Google Scholar] [CrossRef]
- Baker, F.C.; Waner, J.I.; Vieira, E.F.; Taylor, S.R.; Driver, H.S.; Mitchell, D. Sleep and 24 Hour Body Temperatures: A Comparison in Young Men, Naturally Cycling Women and Women Taking Hormonal Contraceptives. J. Physiol. 2001, 530, 565–574. [Google Scholar] [CrossRef]
- Simoes, R.; Vardasca, R.; Nogueira-Silva, C. Thermal Skin Reference Values in Healthy Late Pregnancy. J. Therm. Biol. 2012, 37, 608–614. [Google Scholar] [CrossRef]
- Reeder, B.; David, A. Health at Hand: A Systematic Review of Smart Watch Uses for Health and Wellness. J. Biomed. Inform. 2016, 63, 269–276. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating Sources of Inaccuracy in Wearable Optical Heart Rate Sensors. npj Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosoli, G.; Spinsante, S.; Scalise, L. Wrist-Worn and Chest-Strap Wearable Devices: Systematic Review on Accuracy and Metrological Characteristics. Measurement 2020, 159, 107789. [Google Scholar] [CrossRef]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-Term Heart Rate Variability—Influence of Gender and Age in Healthy Subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [Green Version]
- Verkuil, B.; Brosschot, J.F.; Marques, A.H.; Kampschroer, K.; Sternberg, E.M.; Thayer, J.F. Gender Differences in the Impact of Daily Sadness on 24-h Heart Rate Variability: Gender, Sadness, and HRV. Psychophysiology 2015, 52, 1682–1688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudielka, B.M.; Buske-Kirschbaum, A.; Hellhammer, D.H.; Kirschbaum, C. Differential Heart Rate Reactivity and Recovery after Psychosocial Stress (TSST) in Healthy Children, Younger Adults, and Elderly Adults: The Impact of Age and Gender. Int. J. Behav. Med. 2004, 11, 116–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, D.; Simoes-Capela, N.; Van Hoof, C.; Van Helleputte, N. Heart Rate Estimation from Wrist-Worn Photoplethysmography: A Review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Christie, M.J. Electrodermal Activity in the 1980s: A Review. J. R. Soc. Med. 1981, 74, 616–622. [Google Scholar] [CrossRef] [Green Version]
- Farage, M.A.; Miller, K.W.; Zouboulis, C.C.; Piérard, G.E.; Maibach, H.I. Gender Differences in Skin Aging and the Changing Profile of the Sex Hormones with Age. J. Steroids Horm. Sci. 2012, 3, 1000109. [Google Scholar] [CrossRef] [Green Version]
- Mehnert, P.; Bröde, P.; Griefahn, B. Gender-Related Difference in Sweat Loss and Its Impact on Exposure Limits to Heat Stress. Int. J. Ind. Ergon. 2002, 29, 343–351. [Google Scholar] [CrossRef]
- Georgiou, K.; Larentzakis, A.V.; Khamis, N.N.; Alsuhaibani, G.I.; Alaska, Y.A.; Giallafos, E.J. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review. Folia Med. 2018, 60, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallén, M.B.; Hasson, D.; Theorell, T.; Canlon, B.; Osika, W. Possibilities and Limitations of the Polar RS800 in Measuring Heart Rate Variability at Rest. Eur. J. Appl. Physiol. 2012, 112, 1153–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukada, Y.T.; Tokita, M.; Murata, H.; Hirasawa, Y.; Yodogawa, K.; Iwasaki, Y.; Asai, K.; Shimizu, W.; Kasai, N.; Nakashima, H.; et al. Validation of Wearable Textile Electrodes for ECG Monitoring. Heart Vessels 2019, 34, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Im, S.; Jin, G.; Jeong, J.; Yeom, J.; Jekal, J.; Lee, S.; Cho, J.A.; Lee, S.; Lee, Y.; Kim, D.-H.; et al. Gender Differences in Aggression-Related Responses on EEG and ECG. Exp. Neurobiol. 2018, 27, 526–538. [Google Scholar] [CrossRef]
- Bessem, B.; De Bruijn, M.C.; Nieuwland, W. Gender Differences in the Electrocardiogram Screening of Athletes. J. Sci. Med. Sport 2017, 20, 213–217. [Google Scholar] [CrossRef]
- Seeck, M.; Koessler, L.; Bast, T.; Leijten, F.; Michel, C.; Baumgartner, C.; He, B.; Beniczky, S. The Standardized EEG Electrode Array of the IFCN. Clin. Neurophysiol. 2017, 128, 2070–2077. [Google Scholar] [CrossRef]
- Goshvarpour, A.; Goshvarpour, A. EEG Spectral Powers and Source Localization in Depressing, Sad, and Fun Music Videos Focusing on Gender Differences. Cogn. Neurodyn. 2019, 13, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Markovic, A.; Kaess, M.; Tarokh, L. Gender Differences in Adolescent Sleep Neurophysiology: A High-Density Sleep EEG Study. Sci. Rep. 2020, 10, 15935. [Google Scholar] [CrossRef]
- Dimpfel, W. V20. Gender Differences in the Quantitative EEG in Relaxed States and during Cognitive or Emotional Challenges. Clin. Neurophysiol. 2015, 126, e76. [Google Scholar] [CrossRef]
- Fedorowich, L.; Emery, K.; Gervasi, B.; Côté, J.N. Gender Differences in Neck/Shoulder Muscular Patterns in Response to Repetitive Motion Induced Fatigue. J. Electromyogr. Kinesiol. 2013, 23, 1183–1189. [Google Scholar] [CrossRef]
- Wiggert, N.; Wilhelm, F.H.; Derntl, B.; Blechert, J. Gender Differences in Experiential and Facial Reactivity to Approval and Disapproval during Emotional Social Interactions. Front. Psychol. 2015, 6, 1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimberg, U.; Lundquist, L.-O. Gender Differences in Facial Reactions to Facial Expressions. Biol. Psychol. 1990, 30, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.I.; Leskin, G.A.; Klein, D.F. Gender Differences in Panic Disorder: Findings from the National Comorbidity Survey. AJP 2002, 159, 55–58. [Google Scholar] [CrossRef]
- Seebauer, M.; Sidler, M.-A.; Kohl, J. Gender Differences in Workload Effect on Coordination between Breathing and Cycling. Med. Sci. Sport. Exerc. 2003, 35, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, L.; Goscinski, T.; Johansson, A.; Lindberg, L.-G.; Kalman, S. Age and Gender Do Not Influence the Ability to Detect Respiration by Photoplethysmography. J. Clin. Monit. Comput. 2006, 20, 431–436. [Google Scholar] [CrossRef]
- Becklake, M.R.; Kauffmann, F. Gender Differences in Airway Behaviour over the Human Life Span. Thorax 1999, 54, 1119–1138. [Google Scholar] [CrossRef] [Green Version]
- Páez-Montoro, A.; García-Valderas, M.; Olías-Ruíz, E.; López-Ongil, C. Solar Energy Harvesting to Improve Capabilities of Wearable Devices. Sensors 2022, 22, 3950. [Google Scholar] [CrossRef]
- Rong, G.; Zheng, Y.; Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 2021, 21, 3806. [Google Scholar] [CrossRef]
- Ren, W.; Sun, Y.; Zhao, D.; Aili, A.; Zhang, S.; Shi, C.; Zhang, J.; Geng, H.; Zhang, J.; Zhang, L.; et al. High-Performance Wearable Thermoelectric Generator with Self-Healing, Recycling, and Lego-like Reconfiguring Capabilities. Sci. Adv. 2021, 7, eabe0586. [Google Scholar] [CrossRef]
- Lazar, A.; Koehler, C.; Tanenbaum, T.J.; Nguyen, D.H. Why We Use and Abandon Smart Devices. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 635–646. [Google Scholar] [CrossRef]
- Min, C.; Kang, S.; Yoo, C.; Cha, J.; Choi, S.; Oh, Y.; Song, J. Exploring Current Practices for Battery Use and Management of Smartwatches. In Proceedings of the 2015 ACM International Symposium on Wearable Computers—ISWC ’15, Osaka, Japan, 7–11 September 2015; ACM Press: New York, NY, USA, 2015; pp. 11–18. [Google Scholar] [CrossRef]
- Mohrehkesh, S.; Ji, S.; Nadeem, T.; Weigle, M.C. Demographic Prediction of Mobile User from Phone Usage. In Proceedings of the Proceedings Mobile Data Challenge Nokia Workshop, 2012. Available online: https://www.researchgate.net/publication/264888907_Demographic_Prediction_of_Mobile_User_from_Phone_Usage/citations (accessed on 26 April 2023).
- Zeagler, C. Where to Wear It: Functional, Technical, and Social Considerations in on-Body Location for Wearable Technology 20 Years of Designing for Wearability. In Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, HI, USA, 11–15 September 2017; ACM: New York, NY, USA, 2017; pp. 150–157. [Google Scholar] [CrossRef]
- Grimm, M.; Manteuffel, D. Norton Surface Waves in the Scope of Body Area Networks. IEEE Trans. Antennas Propag. 2014, 62, 2616–2623. [Google Scholar] [CrossRef]
- Hao, Y.; Alomainy, A.; Hall, P.S.; Nechayev, Y.I.; Parini, C.G.; Constantinou, C.C. Antennas and Propagation for Body Centric Wireless Communications. In Proceedings of the IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, Honolulu, HI, USA, 3–7 April 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 586–589. [Google Scholar] [CrossRef]
- Thielens, A.; Benarrouch, R.; Wielandt, S.; Anderson, M.; Moin, A.; Cathelin, A.; Rabaey, J. A Comparative Study of On-Body Radio-Frequency Links in the 420 MHz–2.4 GHz Range. Sensors 2018, 18, 4165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, A.; Araujo, A.; Rabaey, J.M. Analyzing the Performance of WBAN Links during Physical Activity Using Real Multi-Band Sensor Nodes. Appl. Sci. 2021, 11, 2920. [Google Scholar] [CrossRef]
- Zhang, Y.; Rau, P.-L.P. Playing with Multiple Wearable Devices: Exploring the Influence of Display, Motion and Gender. Comput. Hum. Behav. 2015, 50, 148–158. [Google Scholar] [CrossRef]
- Holleis, P.; Schmidt, A.; Paasovaara, S.; Puikkonen, A.; Häkkilä, J. Evaluating Capacitive Touch Input on Clothes. In Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, Amsterdam, The Netherlands, 2–5 September 2008; ACM: New York, NY, USA, 2008; pp. 81–90. [Google Scholar] [CrossRef] [Green Version]
- Turmo Vidal, L.; Zhu, H.; Waern, A.; Márquez Segura, E. The Design Space of Wearables for Sports and Fitness Practices. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; ACM: New York, NY, USA, 2021; pp. 1–14. [Google Scholar] [CrossRef]
- Profita, H.P.; Clawson, J.; Gilliland, S.; Zeagler, C.; Starner, T.; Budd, J.; Do, E.Y.-L. Don’t Mind Me Touching My Wrist: A Case Study of Interacting with on-Body Technology in Public. In Proceedings of the 2013 International Symposium on Wearable Computers, Zurich, Switzerland, 8–12 September 2013; ACM: New York, NY, USA, 2013; pp. 89–96. [Google Scholar] [CrossRef]
- Mehrotra, A.; Müller, S.R.; Harari, G.M.; Gosling, S.D.; Mascolo, C.; Musolesi, M.; Rentfrow, P.J. Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Patterns. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2017, 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Sehrt, J.; Braams, B.; Henze, N.; Schwind, V. Social Acceptability in Context: Stereotypical Perception of Shape, Body Location, and Usage of Wearable Devices. BDCC 2022, 6, 100. [Google Scholar] [CrossRef]
- Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing Wearable Systems for Sports: A Review of Trends and Opportunities in Human–Computer Interaction. IEEE Trans. Hum.-Mach. Syst. 2019, 49, 314–325. [Google Scholar] [CrossRef]
- Dunne, L.E.; Profita, H.; Zeagler, C.; Clawson, J.; Gilliland, S.; Do, E.Y.-L.; Budd, J. The Social Comfort of Wearable Technology and Gestural Interaction. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4159–4162. [Google Scholar] [CrossRef]
- Lee, E.-J. Gender Influence in the Effect of Design Aesthetics on Perceived Product Value of Wearables. Int. J. Adv. Cult. Technol. 2020, 8, 129–138. [Google Scholar] [CrossRef]
- Fortmann, J.; Heuten, W.; Boll, S. User Requirements for Digital Jewellery. In Proceedings of the 2015 British HCI Conference, Lincoln, UK, 13–17 July 2015; ACM: New York, NY, USA, 2015; pp. 119–125. [Google Scholar] [CrossRef]
- Shih, P.C.; Han, K.; Poole, E.S.; Rosson, M.B.; Carroll, J. Use and Adoption Challenges of Wearable Activity Trackers. In Proceedings of the Conference: Proceedings of the iConference, Newport Beach, CA, USA, 24–27 March 2015; Available online: https://www.ideals.illinois.edu/items/73856 (accessed on 26 April 2023).
- Silina, Y.; Haddadi, H. New Directions in Jewelry: A Close Look at Emerging Trends & Developments in Jewelry-like Wearable Devices. In Proceedings of the 2015 ACM International Symposium on Wearable Computers—ISWC ’15, Osaka, Japan, 7–11 September 2015; ACM Press: New York, NY, USA, 2015; pp. 49–56. [Google Scholar] [CrossRef]
- Norman, D.A.; Draper, S.W. User Centered System Design: New Perspectives on Human-Computer Interaction; Norman, D.A., Draper, S.W., Eds.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1986; ISBN 978-0-89859-781-3. Available online: https://dl.acm.org/doi/10.5555/576915 (accessed on 26 April 2023).
- Schauss, G.; Arquilla, K.; Anderson, A. ARGONAUT: An Inclusive Design Process for Wearable Health Monitoring Systems. In Proceedings of the CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April–5 May 2022; ACM: New York, NY, USA, 2022; pp. 1–12. [Google Scholar] [CrossRef]
- Niknejad, N.; Ismail, W.B.; Mardani, A.; Liao, H.; Ghani, I. A Comprehensive Overview of Smart Wearables: The State of the Art Literature, Recent Advances, and Future Challenges. Eng. Appl. Artif. Intell. 2020, 90, 103529. [Google Scholar] [CrossRef]
- Fusca, M.; Negrini, F.; Perego, P.; Magoni, L.; Molteni, F.; Andreoni, G. Validation of a Wearable IMU System for Gait Analysis: Protocol and Application to a New System. Appl. Sci. 2018, 8, 1167. [Google Scholar] [CrossRef] [Green Version]
- Understanding and Addressing Violence against Women. World Health Organization 2012. Available online: https://www.who.int/news-room/fact-sheets/detail/violence-against-women (accessed on 14 April 2023).
- Delegación del Gobierno Contra la Violencia de Género. Available online: https://violenciagenero.igualdad.gob.es/violenciaEnCifras/victimasMortales/fichaMujeres/home.htm (accessed on 14 April 2023).
- Blanco Ruiz, M.Á.; Gutiérrez Martín, L.; Miranda Calero, J.A.; Canabal Benito, M.F.; Romero Perales, E.; Sainz De Baranda Andújar, C.; San Segundo Manuel, R.; Larrabeiti López, D.; Peláez Moreno, C.; López Ongil, C. UC3M4Safety Database—List of Audiovisual Stimuli (Video). 2021. Available online: https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/FNUHKE (accessed on 26 April 2023).
- Miranda Calero, J.A.; Gutiérrez Martín, L.; Canabal Benito, M.F.; Paez Montoro, A.; Ramírez Bárcenas, A.; Lanza Gutiérrez, J.M.; Romero Perales, E.; López Ongil, C. UC3M4Safety Database—WEMAC: Physiological Signals. 2022. Available online: https://edatos.consorciomadrono.es/dataset.xhtml?persistentId=doi:10.21950/LUO1IZ (accessed on 26 April 2023).
- Miranda Calero, J.A.; Rituerto-Gonzalez, E.; Luis-Mingueza, C.; Canabal, M.F.; Barcenas, A.R.; Lanza-Gutierrez, J.M.; Pelaez-Moreno, C.; Lopez-Ongil, C. Bindi: Affective Internet of Things to Combat Gender-Based Violence. IEEE Internet Things J. 2022, 9, 21174–21193. [Google Scholar] [CrossRef]
Variable | Anatomic | Socialization |
---|---|---|
Temperature | Absolute values; response to sudden changes; menstrual cycle; hormone therapy; pregnancy | Time spent in outdoor and indoor locations; task distribution |
Cardiac activity | Heart rate absolute value; heart rate variability; different features for extracting values; response to stress, exercise or emotional states | Response to stress, exercise, aggressions or emotional states; daily activities and movements |
GSR | Absolute values; response to sudden changes; menstrual cycle; menopause | Time spent in outdoor and indoor locations; task distribution |
EEG | Spectrum power for all frequency bands; spatial distribution | Response to stress, aggressions or emotional states |
EMG | Muscle response; muscle contractions /distensions to different movements; extension amplitude; inter-muscular patterns | Emotional expression muscle activation; daily activities and movements |
Respiration | Difficulties during panic attacks; menstrual cycle; hormone treatments; menopause | Difficulties during panic attacks; daily activities and movements |
Element | Morpho-Physiology | Gender Socialization | Intersectionality |
---|---|---|---|
Functionality | X | X | X |
Sensors | X | X | X |
Temperature | X | X | X |
Heart Rate | X | X | |
GSR | X | X | X |
ECG | X | X | |
EEG | X | X | X |
EMG | X | X | |
Respiration | X | X | |
CPU & memory | X | X | |
Power supply | X | X | |
Communications | X | X | X |
User interface | X | X | |
Location | X | X | X |
Wearability | X | X | X |
Design | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Perales, E.; Sainz-de-Baranda Andujar, C.; López-Ongil, C. Electronic Design for Wearables Devices Addressed from a Gender Perspective: Cross-Influences and a Methodological Proposal. Sensors 2023, 23, 5483. https://doi.org/10.3390/s23125483
Romero-Perales E, Sainz-de-Baranda Andujar C, López-Ongil C. Electronic Design for Wearables Devices Addressed from a Gender Perspective: Cross-Influences and a Methodological Proposal. Sensors. 2023; 23(12):5483. https://doi.org/10.3390/s23125483
Chicago/Turabian StyleRomero-Perales, Elena, Clara Sainz-de-Baranda Andujar, and Celia López-Ongil. 2023. "Electronic Design for Wearables Devices Addressed from a Gender Perspective: Cross-Influences and a Methodological Proposal" Sensors 23, no. 12: 5483. https://doi.org/10.3390/s23125483
APA StyleRomero-Perales, E., Sainz-de-Baranda Andujar, C., & López-Ongil, C. (2023). Electronic Design for Wearables Devices Addressed from a Gender Perspective: Cross-Influences and a Methodological Proposal. Sensors, 23(12), 5483. https://doi.org/10.3390/s23125483