Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies
Abstract
:1. Introduction
2. RF Coil as RLC Circuit
3. The SNR
4. Current Distribution in Coil Conductors
5. Theoretical Approaches for Conductor Resistance Calculation
6. A Theoretical–Experimental Hybrid Method
7. Full-Wave Simulations
8. Experimental Measurements
9. Strategies for Minimizing the Conductor Losses
9.1. Litz Wire
- Skin losses (deriving from skin effect) within each considered strand;
- Proximity losses (due to the proximity effect) in the surrounding strands and nearby conductors;
- Eddy losses (frequency-independent losses or DC losses) due to the environment of the coil (mainly determined by sample losses).
9.2. Cooled Coils
9.3. Superconducting Coils
10. Novelties
10.1. Thin or Alternate Conductors
10.2. Flexible and Adaptive Coils
10.3. Metamaterials
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haase, A.; Odoj, F.; Kienlin, M.V.; Warnking, J.; Fidler, F.; Weisser, A.; Nittka, M.; Rommel, E.; Lanz, T.; Kalusche, B.; et al. NMR Probeheads for in Vivo Applications. Concepts Magn. Reson. 2000, 12, 361–388. [Google Scholar] [CrossRef]
- Vaughan, J.T.; Griffiths, J.R. RF Coils for MRI; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Roemer, P.B.; Edelstein, W.A.; Hayes, C.E.; Souza, S.P.; Mueller, O.M. The NMR Phased Array. Magn. Reson. Med. 1990, 16, 192–225. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, G.; Viti, V.; Positano, V.; Santarelli, M.F.; Landini, L.; Benassi, A. Coil Sensitivity Map-Based Filter for Phased-Array Image Reconstruction in Magnetic Resonance Imaging. Int. J. Biomed. Eng. Technol. 2007, 1, 4–17. [Google Scholar] [CrossRef]
- Hoult, D.I.; Richards, R.E. The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment. J. Magn. Reson. 2011, 213, 329–343. [Google Scholar] [CrossRef]
- Giovannetti, G.; Hartwig, V.; Positano, V.; Vanello, N. Radiofrequency Coils for Magnetic Resonance Applications: Theory, Design, and Evaluation. Crit. Rev. Biomed. Eng. 2014, 42, 109–135. [Google Scholar] [CrossRef]
- Hoult, D.I. The Principle of Reciprocity in Signal Strength Calculations—A Mathematical Guide. Concepts Magn. Reson. 2000, 12, 173–187. [Google Scholar] [CrossRef]
- Jin, J. Electromagnetic Analysis and Design in Magnetic Resonance Imaging, 1st ed.; Routledge: Abingdon-on-Thames, UK; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Hayes, C.E.; Edelstein, W.A.; Schenck, J.F.; Mueller, O.M.; Eash, M. An Efficient, Highly Homogeneous Radiofrequency Coil for Whole-Body NMR Imaging at 1.5 T. J. Magn. Reson. 1969 1985, 63, 622–628. [Google Scholar] [CrossRef]
- Edelstein, W.A.; Glover, G.H.; Hardy, C.J.; Redington, R.W. The Intrinsic Signal-to-Noise Ratio in NMR Imaging. Magn. Reson. Med. 1986, 3, 604–618. [Google Scholar] [CrossRef]
- Hoult, D.I.; Lauterbur, P.C. The Sensitivity of the Zeugmatographic Experiment Involving Human Samples. J. Magn. Reson. 1969 1979, 34, 425–433. [Google Scholar] [CrossRef]
- Darrasse, L.; Ginefri, J.C. Perspectives with cryogenic RF probes in biomedical MRI. Biochimie 2003, 85, 915–937. [Google Scholar] [CrossRef]
- Claasen-Vujcić, T.; Borsboom, H.M.; Gaykema, H.J.; Mehlkopf, T. Transverse Low-Field RF Coils in MRI. Magn. Reson. Med. 1996, 36, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Crozier, S.; Luescher, K.; Forbes, L.K.; Doddrell, D.M. Optimized Small-Bore, High-Pass Resonator Designs. J. Magn. Reson. Ser. B 1995, 109, 1–11. [Google Scholar] [CrossRef]
- Chen, C.N.; Hoult, D.I. Biomedical Magnetic Resonance Technology; Adam Hilger: Bristol, UK, 1989. [Google Scholar]
- Matick, R.E. Transmission Lines and Communication Networks: An Introduction to Transmission Lines, High-Frequency and High-Speed Pulse Characteristics and Applications; Wiley: Hoboken, NJ, USA, 2000. [Google Scholar]
- Hurlston, S.E.; Brey, W.W.; Suddarth, S.A.; Johnson, G.A. A High-Temperature Superconducting Helmholtz Probe for Microscopy at 9.4 T. Magn. Reson. Med. 1999, 41, 1032–1038. [Google Scholar] [CrossRef]
- Frass-Kriegl, R.; Hosseinnezhadian, S.; Poirier-Quinot, M.; Laistler, E.; Ginefri, J.-C. Multi-Loop Radio Frequency Coil Elements for Magnetic Resonance Imaging: Theory, Simulation, and Experimental Investigation. Front. Phys. 2020, 7, 237. [Google Scholar] [CrossRef]
- Belevitch, V. Lateral skin effect in a flat conductor. Philips Tech. Rev. 1971, 32, 221–231. [Google Scholar]
- Carlson, J.W. Currents and Fields of Thin Conductors in Rf Saddle Coils. Magn. Reson. Med. 1986, 3, 778–790. [Google Scholar] [CrossRef]
- Schmid, K.; Approximate, R.F. Resistance of Rectangular Cross Section Conductors. Available online: https://studylib.net/doc/18052152/approximate-r.f.-resistance-of-rectangular-cross-section (accessed on 2 April 2023).
- Terman, F.E. Radio Engineers’ Handbook, 1st ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA; London, UK, 1943. [Google Scholar]
- Mispelter, J.; Lupu, M.; Briguet, A. NMR Probeheads for Biophysical and Biomedical Experiments: Theoretical Principles and Practical Guidelines, 2nd ed.; Imperial College Press: London, UK, 2015. [Google Scholar]
- Gerling, D. Approximate analytical calculation of the skin effect in rectangular wires. In Proceedings of the 2009 International Conference on Electrical Machines and Systems, Tokyo, Japan, 15–18 November 2009; pp. 1–6. [Google Scholar]
- Guo, J.; Kajfez, D.; Glisson, A.W. Skin-effect resistance of rectangular strips. Electron. Lett. 1997, 33, 966–967. [Google Scholar] [CrossRef]
- Alonso, J.I.; Borja, J.; Perez, F. A Universal Model for Lossy and Dispersive Transmission Lines for Time Domain CAD of Circuits. IEEE MTT-S Int. Microw. Symp. Dig. 1991, 3, 991–994. [Google Scholar]
- Faraji-Dana, R.; Chow, Y.L. The Current Distribution and AC Resistance of a Microstrip Structure. IEEE Trans. Microw. Theory Tech. 1990, 38, 1268–1277. [Google Scholar] [CrossRef]
- Waldow, P.; Wolff, I. The Skin-Effect at High Frequencies. IEEE Trans. Microw. Theory Tech. 1985, 33, 1076–1082. [Google Scholar] [CrossRef]
- Haefner, S.J. Alternating-Current Resistance of Rectangular Conductors. Proc. IRE 1937, 25, 434–447. [Google Scholar] [CrossRef]
- Giovannetti, G.; Hartwig, V.; Landini, L.; Santarelli, M.F. Low-Field MR Coils: Comparison between Strip and Wire Conductors. Appl. Magn. Reson. 2010, 39, 391–399. [Google Scholar] [CrossRef]
- Giovannetti, G.; Hartwig, V.; Landini, L.; Santarelli, M.F. Classical and Lateral Skin Effect Contributions Estimation in Strip MR Coils. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2012, 41B, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Riba, J.R. Analysis of formulas to calculate the AC resistance of different conductors’ configurations. Electr. Power Syst. Res. 2015, 127, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, G.; Tiberi, G.; Tosetti, M. Finite element method-based approach for radiofrequency magnetic resonance coil losses estimation. Concepts Magn. Reson. Eng. 2016, 46B, 159–223. [Google Scholar] [CrossRef]
- Giovannetti, G.; De Marchi, D. Capacitors Quality Effect in Magnetic Resonance Radiofrequency Coils. J. Med. Biol. Eng. 2017, 37, 639–643. [Google Scholar] [CrossRef]
- Hartwig, V.; Vanello, N.; Giovannetti, G.; De Marchi, D.; Lombardi, M.; Landini, L.; Santarelli, M.F. B(1)(+)/actual flip angle and reception sensitivity mapping methods: Simulation and comparison. Magn. Reson. Imaging 2011, 29, 717–722. [Google Scholar] [CrossRef]
- Hartwig, V.; Giovannetti, G.; Vanello, N.; Landini, L.; Santarelli, M.F. Numerical Calculation of Peak-to-Average Specific Absorption Rate on Different Human Thorax Models for Magnetic Resonance Safety Considerations. Appl. Magn. Reson. 2010, 38, 337–348. [Google Scholar] [CrossRef]
- Giovannetti, G.; Viti, V.; Liu, Y.; Yu, W.; Mittra, R.; Landini, L.; Benassi, A. An accurate simulator for magnetic resonance coil sensitivity estimation. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2008, 33B, 209–215. [Google Scholar] [CrossRef]
- Giovannetti, G.; Frijia, F.; Flori, A. Radiofrequency Coils for Low-Field (0.18–0.55 T) Magnetic Resonance Scanners: Experience from a Research Lab–Manufacturing Companies Cooperation. Electronics 2022, 11, 4233. [Google Scholar] [CrossRef]
- Freed, J.H.; Leniart, D.S.; Hyde, J.S. Theory of Saturation and Double Resonance Effects in ESR Spectra. III. Rf Coherence and Line Shapes. J. Chem. Phys. 1967, 47, 2762–2773. [Google Scholar] [CrossRef]
- Giovannetti, G.; Francesconi, R.; Landini, L.; Santarelli, M.F.; Positano, V.; Viti, V.; Benassi, A. Conductor Geometry and Capacitor Quality for Performance Optimization of Low-Frequency Birdcage Coils. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2004, 20B, 9–16. [Google Scholar] [CrossRef]
- Doty, F.D.; Entzminger, G.; Hauck, C.D.; Staab, J.P. Practical Aspects of Birdcage Coils. J. Magn. Reson. 1999, 138, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Grafendorfer, T.; Conolly, S.; Sullivan, C.; Macovski, A.; Scott, G. Can Litz Coils Benefit SNR in Remotely Polarized MRI? In Proc. Intl. Soc. Mag. Reson. Med. 2005, 13, 923. [Google Scholar]
- Grafendorfer, T.; Conolly, S.; Matter, N.; Pauly, J.; Scott, G. Optimized Litz Coil Design for Prepolarized Extremity MRI. Proc. Intl. Soc. Mag. Reason. Med. 2006, 14, 2613. [Google Scholar]
- Dominguez-Viqueira, W.; Berger, W.; Parra-Robles, J.; Santyr, G.E. Litz wire radiofrequency receive coils for hyperpolarized noble gas MR imaging of rodent lungs at 73.5 mT. Concepts Magn. Reson. Part B Magn. Reson. Eng. 2010, 37B, 75–85. [Google Scholar] [CrossRef]
- Croon, J.A.; Borsboom, H.M.; Mehlkopf, A.F. Optimization of low frequency Litz–wire RF coils. Proc. Int. Soc. Magn. Reson. Med. 1999, 7, 740. [Google Scholar]
- Sullivan, C.R. Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding. IEEE Trans. Power Electron. 1999, 14, 283–291. [Google Scholar] [CrossRef] [Green Version]
- Lofti, A.W.; Lee, F.C. A high frequency model for Litz wire for switch-mode magnetics. In Proceeding of the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting, Toronto, ON, Canada, 2–8 October 1993. [Google Scholar] [CrossRef]
- Roßkopf, A.; Bär, E.; Joffe, C. Influence of Inner Skin- and Proximity Effects on Conduction in Litz Wires. IEEE Trans. Power Electron. 2014, 29, 5454–5461. [Google Scholar] [CrossRef]
- Zhao, W.; Peng, Y.; Zhan, S.; Wang, H. Design and Optimization of Litz-Wire Planar Spiral Coil for Inductive Power Transfer Application. TechRxiv 2023. preprint. [Google Scholar] [CrossRef]
- Sullivan, C.R.; Zhang, R.Y. Simplified Design Method for Litz Wire. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition—APEC 2014, Fort Worth, TX, USA, 16–20 March 2014; pp. 2667–2674. [Google Scholar]
- Enpuku, K.; Hirakawa, S.; Momotomi, R.; Matsuo, M.; Yoshida, T.; Kandori, A. Design of Pickup Coil Made of Litz Wire and Cooled at 77 K for High Sensitive Measurement of AC Magnetic Fields. Jpn. J. Appl. Phys. 2011, 50, 076602. [Google Scholar] [CrossRef]
- Coffey, A.M.; Truong, M.; Chekmenev, E.Y. Low-Field MRI Can Be More Sensitive than High-Field MRI. J. Magn. Reson. 2013, 237, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, G.; Menichetti, L. Litz Wire RF Coils for Low Frequency NMR Applications. Measurement 2017, 110, 116–120. [Google Scholar] [CrossRef]
- Doty, F.D.; Entzminger, G.; Hauck, C.D. Error-Tolerant RF Litz Coils for NMR/MRI. J. Magn. Reson. 1999, 140, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Connord, V.B.; Mehdaoui, B.; Tan, R.P.; Carrey, J.; Respaud, M. An air-cooled Litz wire coil for measuring the high frequency hysteresis loops of magnetic samples—A useful setup for magnetic hyperthermia applications. Rev. Sci. Instrum. 2014, 85, 093904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.C.; Song, H.K.; Wehrli, F.W. In vivo MR micro imaging with conventional radiofrequency coils cooled to 77 °K. Magn. Reson. Med. 2000, 43, 163–169. [Google Scholar] [CrossRef]
- Kovacs, H.; Moskau, D.; Spraul, M. Cryogenically Cooled Probes—A Leap in NMR Technology. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 46, 131–155. [Google Scholar] [CrossRef]
- Hu, B.; Varma, G.; Randell, C.; Keevil, S.F.; Schaeffter, T.; Glover, P. A Novel Receive-Only Liquid Nitrogen (LN2)-Cooled RF Coil for High-Resolution in Vivo Imaging on a 3-Tesla Whole-Body Scanner. IEEE Trans. Instrum. Meas. 2012, 61, 129–139. [Google Scholar] [CrossRef]
- Sánchez-Heredia, J.D.; Baron, R.; Hansen, E.S.S.; Laustsen, C.; Zhurbenko, V.; Ardenkjaer-Larsen, J.H. Autonomous cryogenic RF receive coil for 13 C imaging of rodents at 3 T. Magn. Reson. Med. 2020, 84, 497–508. [Google Scholar] [CrossRef]
- Bednorz, J.G.; Müller, K.A. Possible HighTc Superconductivity in the Ba−La−Cu−O System. Z. Phys. B Condens. Matter 1986, 64, 189–193. [Google Scholar] [CrossRef]
- Haueisen, R.; Marek, D.; Sacher, M.; Kong, F.; Ugurbil, K.; Junge, S. Cryogenic Probe Setup for Routine MRI on Small Animals at 9.4 T. Presentation #80. In Proceedings of the 22nd Annual ESMRMB Meeting, Basel, Switzerland, 15–18 September 2005. [Google Scholar]
- Ma, Q.Y.; Chan, K.C.; Kacher, D.F.; Gao, E.; Chow, M.S.; Wong, K.K.; Xu, H.; Yang, E.S.; Young, G.S.; Miller, J.R.; et al. Superconducting RF Coils for Clinical MR Imaging at Low Field. Acad. Radiol. 2003, 10, 978–987. [Google Scholar] [CrossRef]
- Gogola, D.; Szomolanyi, P.; Škrátek, M.; Frollo, I. Design and Construction of Novel Instrumentation for Low-Field MR Tomography. Meas. Sci. Rev. 2018, 18, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Saniour, I.; Geahel, M.; Briatico, J.; van der Beek, C.J.; Willoquet, G.; Jourdain, L.; Baudouy, B.; Authelet, G.; Ginefri, J.C.; Darrasse, L.; et al. Versatile cryogen-free cryostat for the electromagnetic characterization of superconducting radiofrequency coils. EPJ Tech. Instrum. 2020, 7, 3. [Google Scholar] [CrossRef]
- Labbé, A.; Authelet, G.; Baudouy, B.; van der Beek, C.J.; Briatico, J.; Darrasse, L.; Poirier-Quinot, M. Recent Advances and Challenges in the Development of Radiofrequency HTS Coil for MRI. Front. Phys. 2021, 9, 705438. [Google Scholar] [CrossRef]
- Barta, R.; Volotovskyy, V.; Wachowicz, K.; Fallone, B.G.; De Zanche, N. How Thin Can You Go? Performance of Thin Copper and Aluminum RF Coil Conductors. Magn. Reson. Med. 2021, 85, 2327–2333. [Google Scholar] [CrossRef]
- Zamarayeva, A.M.; Gopalan, K.; Corea, J.R.; Liu, M.Z.; Pang, K.; Lustig, M.; Arias, A.C. Custom, Spray Coated Receive Coils for Magnetic Resonance Imaging. Sci. Rep. 2021, 11, 2635. [Google Scholar] [CrossRef]
- Gruber, B.; Froeling, M.; Leiner, T.; Klomp, D.W.J. RF Coils: A Practical Guide for Nonphysicists. J. Magn. Reson. Imaging 2018, 48, 590–604. [Google Scholar] [CrossRef]
- Bae, K.; Jeon, K.N.; Hwang, M.J.; Jung, Y.; Lee, J. Application of Highly Flexible Adaptive Image Receive Coil for Lung MR Imaging Using Zero TE Sequence: Comparison with Conventional Anterior Array Coil. Diagnostics 2022, 12, 148. [Google Scholar] [CrossRef]
- Wang, B.; Siddiq, S.S.; Walczyk, J.; Bruno, M.; Khodarahmi, I.; Brinkmann, I.M.; Rehner, R.; Lakshmanan, K.; Fritz, J.; Brown, R. A Flexible MRI Coil Based on a Cable Conductor and Applied to Knee Imaging. Sci. Rep. 2022, 12, 15010. [Google Scholar] [CrossRef]
- Webb, A.; Shchelokova, A.; Slobozhanyuk, A.; Zivkovic, I.; Schmidt, R. Novel Materials in Magnetic Resonance Imaging: High Permittivity Ceramics, Metamaterials, Metasurfaces and Artificial Dielectrics. Magn. Reson. Mater. Phys. Biol. Med. 2022, 35, 875–894. [Google Scholar] [CrossRef]
- Zhang, X. Sensitivity Enhancement of Traveling Wave MRI Using Free Local Resonators: An Experimental Demonstration. Quant. Imaging Med. Surg. 2017, 7, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aly Saad Aly, M.; Aly, S.; Lopez, N.; Weyers, D.; Rasheed, S.; Abdel-Rahman, E.; Hajian, A. Investigating the Use of Carbon Nanotubes in MRI Receiver Coils. Proc. Intl. Soc. Mag. Reson. Med. 2011, 19, 3884. [Google Scholar]
Birdcage Conductor | Q | r | η (µT/w1/2) |
---|---|---|---|
Strip (w = 1 cm, t = 35 µm) | 228 | 2.05 | 34.61 |
Strip (w = 1 cm, t = 800 µm) | 374 | 2.33 | 42.74 |
Wire (a = 2.25 mm) | 477 | 2.93 | 52.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannetti, G.; Flori, A.; Frijia, F. Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies. Sensors 2023, 23, 5586. https://doi.org/10.3390/s23125586
Giovannetti G, Flori A, Frijia F. Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies. Sensors. 2023; 23(12):5586. https://doi.org/10.3390/s23125586
Chicago/Turabian StyleGiovannetti, Giulio, Alessandra Flori, and Francesca Frijia. 2023. "Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies" Sensors 23, no. 12: 5586. https://doi.org/10.3390/s23125586
APA StyleGiovannetti, G., Flori, A., & Frijia, F. (2023). Conductor Losses in Radiofrequency Coils for Magnetic Resonance below 3T: Estimation Methods and Minimization Strategies. Sensors, 23(12), 5586. https://doi.org/10.3390/s23125586