Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors
Abstract
:1. Introduction
2. Fiber Bragg Grating Sensors
2.1. Sensing Principle
2.1.1. Sensing Principle of FBG
2.1.2. Sensing Principle of TFBG
2.2. Fabrication Materials and Assembly Units
2.2.1. Fabrication Materials
2.2.2. Assembly Units
3. Single-Parameter Monitoring
3.1. Temperature Monitoring
3.1.1. External Temperature Monitoring
3.1.2. Internal Temperature Monitoring
3.2. Strain Monitoring
3.2.1. External Strain Monitoring
3.2.2. Internal Strain Monitoring
4. Dual-Parameter Monitoring
4.1. Simultaneous Monitoring of Temperature and Strain
4.1.1. Parallel Reference FBG
4.1.2. Tilted and Fixed Three FBGs
4.1.3. Polarization-Maintaining FBG
4.1.4. FBG Combined with FPI
4.2. Simultaneous Monitoring of Temperature and Pressure
4.3. Simultaneous Monitoring of Temperature and Electrolyte RI
5. Utilization of Monitored Data
5.1. SOC and SOH Estimation of Lithium-Ion Batteries
5.1.1. Dynamic Time-Warping Algorithm
5.1.2. Deep Neural Network
5.2. Safety Warning for Lithium-Ion Batteries
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, J.H.; Koh, D.; Kolluri, S.; Uppaluri, M.; Subramaniam, A.; Subramanian, V.R. Efficient Electrochemical State of Health Model for Lithium-Ion Batteries under Storage Conditions. J. Phys. Chem. C 2023, 127, 2183–2193. [Google Scholar] [CrossRef]
- Torabian, M.M.; Jafari, M.; Bazargan, A. Discharge of Lithium-Ion Batteries in Salt Solutions for Safer Storage, Transport, and Resource Recovery. Waste Manag. Res. 2022, 40, 402–409. [Google Scholar] [CrossRef]
- Feng, S.R.; Wang, A.C.; Cai, J.; Zuo, H.F.; Zhang, Y. Health State Estimation of On-Board Lithium-Ion Batteries Based on GMM-BID Model. Sensors 2022, 22, 9637. [Google Scholar] [CrossRef]
- Yin, A.J.; Tan, Z.B.; Tan, J. Life Prediction of Battery Using a Neural Gaussian Process with Early Discharge Characteristics. Sensors 2021, 21, 1087. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, C.; Chen, S.; Zhang, X.; Fan, G.; Zhu, C. Development and Parameterization of a Control-Oriented Electrochemical Model of Lithium-Ion Batteries for Battery-Management-Systems Applications. Appl. Energ. 2022, 309, 118521. [Google Scholar] [CrossRef]
- Li, Y.; Ralahamilage, D.; Vilathgamuwa, M.; Mishra, Y.; Farrell, T.; Choi, S.S.; Zou, C. Model Order Reduction Techniques for Physics-Based Lithium-Ion Battery Management: A Survey. IEEE Ind. Electron. Mag. 2021, 16, 36–51. [Google Scholar] [CrossRef]
- Kamikawachi, R.C.; Abe, I.; Paterno, A.S.; Kalinowski, H.J.; Muller, M.; Pinto, J.L.; Fabris, J.L. Determination of Thermo-Optic Coefficient in Liquids with Fiber Bragg Grating Refractometer. Opt. Commun. 2008, 281, 621–625. [Google Scholar] [CrossRef]
- Falcetelli, F.; Martini, A.; Sante, D.; Troncossi, M. Strain Modal Testing with Fiber Bragg Gratings for Automotive Applications. Sensors 2022, 22, 946. [Google Scholar] [CrossRef]
- Campanella, C.E.; Cuccovillo, A.; Campanella, C.; Yurt, A.; Passaro, V.M.N. Fibre Bragg Grating Based Strain Sensors: Review of Technology and Applications. Sensors 2018, 18, 3115. [Google Scholar] [CrossRef] [Green Version]
- Hahn, M.; Buqa, H.; Ruch, P.W.; Goers, D.; Spahr, M.E.; Ufheil, J.; Novák, P.; Kötz, R. A Dilatometric Study of Lithium Intercalation into Powder-Type Graphite Electrodes. Acta. Ophthalmol. 2015, 93, A151–A154. [Google Scholar] [CrossRef]
- Zhang, N.; Tang, H. Dissecting Anode Swelling in Commercial Lithium-Ion Batteries. J. Power Sources 2012, 218, 52–55. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, H.M.; Ahn, S. Battery Dimensional Changes Occurring During Charge/Discharge Cycles-Thin Rectangular Lithium Ion and Polymer Cells. J. Power Sources 2003, 119, 833–837. [Google Scholar] [CrossRef]
- Chen, X.; Chen, S.; Lin, Y.; Wu, K.; Lu, S. Multi-Functional Ceramic-Coated Separator for Lithium-ion Battery Safety Tolerance Improvement. Ceram. Int. 2020, 46, 24689–24697. [Google Scholar] [CrossRef]
- Pannala, S.; Turner, J.A.; Allu, S.; Elwasif, W.R.; Kalnaus, S.; Simunovic, S.; Kumar, A.; Billings, J.J.; Wang, H.; Nanda, J. Multiscale Modeling and Characterization for Performance and Safety of Lithium-Ion Batteries. J. Appl. Phys. 2015, 247, 503–516. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, F. A Review on Passive and Active Strategies of Enhancing the Safety of Lithium-Ion Batteries. Int. J. Heat. Mass. Tran. 2022, 184, 184. [Google Scholar] [CrossRef]
- Huang, J.; Blanquer, L.A.; Gervillié, C.; Tarascon, J.M. Distributed Fiber Optic Sensing to Assess In-Live Temperature Imaging Inside Batteries: Rayleigh and FBGs. J. Electrochem. Soc. 2021, 168, 060520. [Google Scholar] [CrossRef]
- Yang, S.O.; Lee, S.; Song, S.H.; Yoo, J. Development of a Distributed Optical Thermometry Technique for Battery Cells. Int. J. Heat. Mass Tran. 2022, 194, 123020. [Google Scholar] [CrossRef]
- Giammichele, L.; D’Alessandro, V.; Falone, M.; Ricci, R. Thermal Behaviour Assessment and Electrical Characterisation of a Cylindrical Lithium-Ion Battery Using Infrared Thermography. Appl. Therm. Eng. Des. Process. Equip. Econ. 2022, 205, 117974. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Baek, D.H.; Lee, J.K. A Study on Thermal Performance of Batteries Using Thermal Imaging and Infrared Radiation. J. Ind. Eng. Chem. 2016, 45, 360–365. [Google Scholar] [CrossRef]
- Ximing, C.; Michael, P. In Situ Stress Measurement Techniques on Li-ion Battery Electrodes. A Review. Energies 2017, 10, 591. [Google Scholar]
- Leung, P.K.; Moreno, C.; Masters, I.; Hazra, S.; Conde, B.; Mohamed, M.R.; Dashwood, R.J.; Bhagat, R. Real-time Displacement and Strain Mappings of Lithium-Ion Batteries Using Three-Dimensional Digital Image Correlation. J. Power Sources 2014, 271, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Sone, Y.; Kuwajima, S. In Situ Investigation of The Volume Change in Li-Ion Cell with Charging and Discharging Satellite Power Applications. J. Electrochem. Soc. 2004, 151, A273–A280. [Google Scholar] [CrossRef]
- Wang, X.; Sone, Y.; Segami, G.; Naito, H.; Yamada, C.; Kibe, K. Understanding Volume Change in Lithium-Ion Cells During Charging and Discharging Using in Situ Measurements. J. Electrochem. Soc. 2007, 154, A14–A21. [Google Scholar] [CrossRef]
- Lei, B.; Zhao, W.; Ziebert, C.; Uhlmann, N.; Rohde, M.; Seifert, H.J. Experimental Analysis of Thermal Runaway in 18650 Cylindrical Li-Ion Cells Using an Accelerating Rate Calorimeter. Batteries 2017, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, J.; Benjamin, K.; Jan, P.S.; Meir, B.; Elian, K.; Ensling, D.; Keser, G.; Jossen, A. Measurement of Gas Pressure Inside Large-Format Prismatic Lithium-Ion Cells during Operation and Cycle Aging. J. Power Sources 2020, 478, 228661. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, H.; Wang, Y.; Li, C.; Liu, Y.; Ouyang, M. Thermal Abusive Experimental Research on the Large-Format Lithium-Ion Battery Using a Buried Dual-Sensor. J. Energy Storage 2021, 33, 102156. [Google Scholar] [CrossRef]
- Zhang, K.; An, Y.L.; Wei, C.L.; Qian, Y.; Zhan, Y.C.; Feng, J.K. High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 50869–50877. [Google Scholar] [CrossRef]
- Huang, J.; Boles, S.T.; Tarascon, J.M. Sensing as the Key to Battery Lifetime and Sustainability. Nat. Sustain. 2022, 5, 194–204. [Google Scholar] [CrossRef]
- Maddar, F.M.; Genieser, R.; Tan, C.C. Monitoring Changes in Electrolyte Composition of Commercial Li-Ion Cells after Cycling Using NMR Spectroscopy and Differential Thermal Analysis. J. Electrochem. Soc. 2023, 170, 030522. [Google Scholar] [CrossRef]
- Huang, J.; Han, X.; Liu, F.; Gervillié, C.; Blanquer, L.A.; Guo, T.; Tarascon, J.M. Monitoring Battery Electrolyte Chemistry via In-Operando Tilted Fiber Bragg Grating Sensors. Energy Environ. Sci. 2021, 14, 6464–6475. [Google Scholar] [CrossRef]
- Schmidt, J.P.; Arnold, S.; Loges, A.; Werner, D.; Wetzel, T.; Tiffée, E.I. Measurement of the Internal Cell Temperature via Impedance: Evaluation and Application of a New Method. J. Power Sources 2013, 243, 110–117. [Google Scholar] [CrossRef]
- Gismero, A.; Schaltz, E.; Stroe, D.I. Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage. Energies 2020, 13, 1811. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.P. Prediction of State of Health of Lithium-Ion Battery Using Health Index Informed Attention Model. Sensors 2023, 23, 2587. [Google Scholar] [CrossRef]
- Lin, Q.Z.; Li, X.Q.; Tu, B.C.; Cao, J.W.; Zhang, M.; Xiang, J.W. Stable and Accurate Estimation of SOC Using eXogenous Kalman Filter for Lithium-Ion Batteries. Sensors 2023, 23, 467. [Google Scholar] [CrossRef]
- Tian, Y.; Lai, R.; Li, X.; Xiang, L.; Tian, J.A. Combined Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network and an Adaptive Cubature Kalman Filter. Appl Energ. 2020, 265, 114789. [Google Scholar] [CrossRef]
- Shen, S.; Liu, B.; Zhang, K.; Ci, S. Toward Fast and Accurate SOH Prediction for Lithium-ion Batteries. IEEE Trans. Energy Convers. 2021, 36, 2036–2046. [Google Scholar] [CrossRef]
- Andre, D.; Appel, C.; Guth, T.S.; Sauer, U.D. Advanced Mathematical Methods of SOC and SOH Estimation for Lithium-Ion Batterie. J. Power Sources 2013, 224, 20–27. [Google Scholar] [CrossRef]
- Kong, S.N.; Moo, C.S.; Chen, Y.P.; Hsieh, Y.C. Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries. Appl. Energ. 2009, 86, 1506–1511. [Google Scholar]
- Zhang, J.; Lee, J. A Review on Prognostics and Health Monitoring of Li-Ion Battery. J. Power Sources 2011, 196, 6007–6014. [Google Scholar] [CrossRef]
- Shrivastava, P.; Soon, T.K.; Idris, M.; Mekhilef, S. Overview of Model-Based Online State-of-Charge Estimation Using Kalman Filter Family for Lithium-Ion Batteries. Renew. Sustain. Energy Rev. 2019, 113, 109233. [Google Scholar] [CrossRef]
- Hung, M.H.; Lin, C.H.; Lee, L.C.; Wang, C.M. State-of-Charge and State-of-Health Estimation for Lithium-Ion Batteries Based on Dynamic Impedance Technique. J. Power Sources 2014, 268, 861–873. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. State of Health and Charge Measurements in Lithium-Ion Batteries Using Mechanical Stress. J. Power Sources 2014, 269, 7–14. [Google Scholar] [CrossRef]
- Jo, S.; Jung, S.; Roh, T. Battery State-of-Health Estimation Using Machine Learning and Preprocessing with Relative State-of-Charge. Energies 2021, 14, 7206. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, Y.; He, H.; Zhou, X.; Pecht, M.G. A Double-Scale, Particle-Filtering, Energy State Prediction Algorithm for Lithium-Ion Batteries. IEEE Trans. Ind. Electron. 2018, 65, 1526–1538. [Google Scholar] [CrossRef]
- Xiong, R.; Zhang, Y.; Wang, J.; He, H.; Peng, S.; Pecht, M. Lithium-Ion Battery Health Prognosis Based on a Real Battery Management System Used in Electric Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 4110–4121. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Hussain, A.; Mohamed, A. A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations. Renew. Sust. Energ. Rev. 2017, 78, 834–854. [Google Scholar] [CrossRef]
- Hong, J.C.; Wang, Z.P.; Yao, Y.T. Fault Prognosis of Battery System Based on Accurate Voltage Abnormity Prognosis Using Long Short-Term Memory Neural Networks. Appl. Energ. 2019, 251, 14. [Google Scholar] [CrossRef]
- Li, Y.D.; Wang, W.W.; Yang, X.G.; Zuo, F.; Liu, S.; Lin, C. A Smart Li-ion Battery with Self-Sensing Capabilities for Enhanced Life and Safety. J. Power Sources 2022, 546, 231705. [Google Scholar] [CrossRef]
- Yang, G.; LeitO, C.; Li, Y.; Pinto, J.; Jiang, X. Real-Time Temperature Measurement with Fiber Bragg Sensors in Lithium Batteries for Safety Usage. Measurement 2013, 46, 3166–3172. [Google Scholar] [CrossRef]
- Sommer, L.W.; Kiesel, P.; Ganguli, A.; Lochbaum, A.; Saha, B.; Schwartz, J.; Bae, C.J.; Alamgir, M.; Raghavan, A. Fast and Slow Ion Diffusion Processes in Lithium-Ion Pouch Cells During Cycling Observed with Fiber Optic Strain Sensors. J. Power Sources 2015, 296, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Sommer, L.W.; Raghavan, A.; Kiesel, P.; Saha, B.; Schwartz, J.; Lochbaum, A.; Ganguli, A.; Bae, C.J.; Alamgir, M. Monitoring of Intercalation Stages in Lithium-Ion Cells over Charge-Discharge Cycles with Fiber Optic Sensors. J. Electrochem. Soc. 2015, 162, A2664–A2669. [Google Scholar] [CrossRef]
- Raghavan, A.; Kiesel, P.; Sommer, L.W.; Schwartz, J.; Lochbaum, A.; Hegyi, A.; Schuh, A.; Arakaki, K.; Saha, B.; Ganguli, A.; et al. Embedded Fiber-Optic Sensing for Accurate Internal Monitoring of Cell State in Advanced Battery Management Systems Part 1: Cell Embedding Method and Performance. J. Power Sources 2017, 341, 466–473. [Google Scholar] [CrossRef] [Green Version]
- Bae, C.J.; Manandhar, A.; Kiesel, P.; Raghavan, A. Monitoring the Strain Evolution of Lithium-Ion Battery Electrodes using an Optical Fiber Bragg Grating Sensor. Energy Technol. 2016, 4, 851–855. [Google Scholar] [CrossRef]
- Novais, S.; Nascimento, M.; Grande, L.; Domingues, M.F.; Antunes, P.; Alberto, N.; Leitão, C.; Oliveira, R.; Koch, S.; Kim, G.T.; et al. Internal and External Temperature Monitoring of a Li-Ion Battery with Fiber Bragg Grating Sensors. Sensors 2016, 16, 1394. [Google Scholar] [CrossRef] [Green Version]
- Fortier, A.; Tsao, M.; Williard, N.; Xing, Y.; Pecht, M. Preliminary Study on Integration of Fiber Optic Bragg Grating Sensors in Li-Ion Batteries and In Situ Strain and Temperature Monitoring of Battery Cells. Energies 2017, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.; Ferreira, M.S.; Pinto, J.L. Real Time Thermal Monitoring of Lithium Batteries with Fiber Sensors and Thermocouples: A Comparative Study. Measurement 2017, 111, 260–263. [Google Scholar] [CrossRef]
- Nascimento, M.; Paixão, T.; Ferreira, M.; Pinto, J. Thermal Mapping of a Lithium Polymer Batteries Pack with FBGs Network. Batteries 2018, 4, 67. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.; Ferreira, M.S.; Pinto, J.L. Simultaneous Sensing of Temperature and Bi-Directional Strain in a Prismatic Li-Ion Battery. Batteries 2018, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Zhou, X.; Jia, S.; Jin, Y.; Xu, S.; Chen, J. High Precision Strain Monitoring for Lithium-Ion Batteries Based on Fiber Bragg Grating Sensors. J. Power Sources 2019, 433, 226692. [Google Scholar] [CrossRef]
- Nascimento, M.; Novais, S.; Ding, M.S.; Ferreira, M.S.; Koch, S.; Passerini, S.; Pinto, J.L. Internal Strain and Temperature Discrimination with Optical Fiber Hybrid Sensors in Li-Ion Batteries. J. Power Sources 2019, 410–411, 1–9. [Google Scholar] [CrossRef]
- Huang, J.; Blanquer, L.A.; Bonefacino, J.; Logan, E.R.; Corte, D.A.D.; Delacourt, C.; Gallant, B.M.; Boles, S.T.; Dahn, J.R.; Tam, H.Y.; et al. Operando Decoding of Chemical and Thermal Events in Commercial Na(Li)-Ion Cells via Optical Sensors. Nat. Energy 2020, 5, 674–683. [Google Scholar] [CrossRef]
- Ee, Y.J.; Tey, K.S.; Lim, K.S.; Shrivastava, P.; Adnan, S.B.R.S.; Ahmadet, H. Lithium-Ion Battery State of Charge (SoC) Estimation with Non-Electrical parameter using Uniform Fiber Bragg Grating (FBG). J. Energy Storage 2021, 40, 102704. [Google Scholar] [CrossRef]
- Rente, B.; Fabian, M.; Vidakovic, M.; Liu, X.; Li, X.; Li, K.; Sun, T.; Grattan, K.T.V. Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning. IEEE Sens. J. 2021, 21, 1453–1460. [Google Scholar] [CrossRef]
- Matuck, L.C.; Pinto, J.L.; Marques, C.A.F.; Nascimento, M.S. Dual-Parameter Discrimination Using Panda-FBG Sensors at Cylindrical Li-Ion Battery. In Proceedings of the 27th International Conference on Optical Fiber Sensors, Alexandria, VA, USA, 29 August–2 September 2022. [Google Scholar]
- Blanquer, L.A.; Marchini, F.; Seitz, J.R.; Daher, N.; Bétermier, F.; Huang, J.Q.; Gervillié, C.; Tarascon, J.-M. Optical Sensors for Operando Stress Monitoring in Lithium-Based Batteries Containing Solid-State or Liquid Electrolytes. Nat. Commun. 2022, 13, 1153. [Google Scholar]
- Hill, K.O.; Meltz, G. Fiber Bragg Grating Technology Fundamentals and Overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.W.; Sun, P.; Du, D.W.; Cui, J.L.; Zhao, Q. Investigating Key Factors for Optimizing FBG Inscribed by Femtosecond Laser. Opt. Commun. 2023, 528, 129049. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg Grating Sensors for Monitoring of Physical Parameters: A Comprehensive Review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Feng, D.Q.; Luo, X.D.; Liu, Y.G.; Ma, C.J.; Qiao, X.G. Performance Improvement of FBG Sensors Based on the Pre-Stressed Package Technique. Opt. Fiber Technol. 2021, 65, 102623. [Google Scholar] [CrossRef]
- Zhang, D.P.; Wang, J.; Wang, Y.J.; Dai, X. A Fast Response Temperature Sensor Based on Fiber Bragg Grating. Meas. Sci. Technol. 2014, 25, 075105. [Google Scholar] [CrossRef]
- Korganbayev, S.; Sypabekova, M.; Amantayeva, A.; González-Vila, Á.; Caucheteur, C.; Saccomandi, P.; Tosi, D. Optimization of Cladding Diameter for Refractive Index Sensing in Tilted Fiber Bragg Gratings. Sensors 2022, 22, 2259. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.O.; Albert, J. Tilted Fiber Grating Mechanical and Biochemical Sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; González-Vila, Á.; Loyez, M.; Caucheteur, C. Plasmonic Optical Fiber-Grating Immunosensing: A Review. Sensors 2017, 17, 2732. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.Q.; Li, X.; Wang, P.; Chen, L.; Chen, X.C.; Zhou, Y.; Zhang, W.; Hu, J.G.; Hu, J.T.; Liao, M.S. Investigation on Sensing Characteristics of Fiber Bragg Gratings Based on Soft Glass Fibers. Optik 2018, 156, 13–21. [Google Scholar] [CrossRef]
- Zhang, Q.; Zeng, J.H.; Zhu, L.; Yang, D.D.; Zhang, P.Q.; Xu, Y.S.; Wang, X.S.; Nie, Q.H.; Dai, S.X. Temperature Sensors Based on Multimode Chalcogenide Fibre Bragg Gratings. J. Mod. Opt. 2018, 65, 830–836. [Google Scholar] [CrossRef]
- Wang, L.L.; Ma, W.Q.; Zhang, P.Q.; Yang, D.D.; Zhu, L.; Wang, X.S.; Dai, S.X. Design and Analysis of Long-Period Fiber Gratings in Tapered Multimode Chalcogenide Glass Fiber for Temperature Measurement. J. Opt. Soc. Am. B 2019, 36, 1792–1798. [Google Scholar] [CrossRef]
- She, L.; Qi, Q.Y.; Zhang, P.Q.; Dai, S.X.; Jiang, Y.X.; Sun, W.M.; Jia, S.J.; Wang, S.B.; Brambilla, G.; Wang, P.F. Mid-infrared Fluoroindate Glass Long-Period Fiber Grating by Femtosecond Laser Inscription. Infrared Phys. Technol. 2021, 116, 103808. [Google Scholar] [CrossRef]
- Peng, J.; Jia, S.; Yu, H.; Kang, X.; Yang, S.; Xu, S. Design and Experiment of FBG Sensors for Temperature Monitoring on External Electrode of Lithium-Ion Batteries. IEEE Sens. J. 2020, 21, 4628–4634. [Google Scholar] [CrossRef]
- Alcock, K.M.; Grammel, M.; González-Vila, A.; Binetti, L.; Goh, K.; Alwis, L.S.M. An Accessible Method of Embedding Fibre Optic Sensors on Lithium-Ion Battery Surface for In-Situ Thermal Monitoring. Sens. Actuators A Phys. 2021, 332, 113061. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; Mcturk, E.; Towers, D.P.; Greenwood, D.; Bhagat, R. Development and Evaluation of In-Situ Instrumentation for Cylindrical Li-Ion Cells Using Fibre Optic Sensors. HardwareX 2018, 3, 100–109. [Google Scholar] [CrossRef]
- Amietszajew, T.; Mcturk, E.; Fleming, J.; Bhagat, R. Understanding the Limits of Rapid Charging Using Instrumented Commercial 18650 High-Energy Li-Ion Cells. Electrochim. Acta 2018, 263, 346–352. [Google Scholar] [CrossRef]
- Pereira, G.; McGugan, M.; Mikkelsen, L.P. Method for Independent Strain and Temperature Measurement in Polymeric Tensile Test Specimen Using Embedded FBG Sensors. Polym. Test. 2016, 50, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, E.; Urbańczyk, W.; Bock, W.J. Measurement of Pressure and Temperature Sensitivities of a Bragg Grating Imprinted in a Highly Birefringent Side-Hole Fiber. Appl. Opt. 2003, 42, 6284–6291. [Google Scholar] [CrossRef]
- Frazao, O.; Carvalho, J.P.; Ferreira, L.A.; Araújo, F.M.; Santos, J.L. Discrimination of Strain and Temperature Using Bragg Gratings in Microstructured and Standard Optical Fibres. Meas. Sci. Technol. 2005, 16, 2109. [Google Scholar] [CrossRef]
- Lu, L.D.; Xu, Y.J.; Dong, M.; Zhu, L. Birefringent Interferometer Cascaded with PM-FBG for Multi-Parameter Testing. IEEE Sens. J. 2021, 22, 338–343. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, D.; Wang, Y.; Zhang, T.; Shao, M.; Yu, D.; Fu, H.; Jia, Z. Fabrication of Dual-Parameter Fiber-Optic Sensor by Cascading FBG with FPI for Simultaneous Measurement of Temperature and Gas Pressure. Opt. Commun. 2019, 443, 166–171. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.N.; Chen, W.P. Crescent Shaped Fabry-Perot Fiber Cavity for Ultrasensitive Strain Measurement. Sci. Rep. 2016, 6, 38390. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, T.; Wang, Y.; Yang, D.; Liu, X.; Fu, H.; Jia, Z. Simultaneous Measurement of Gas Pressure and Temperature with Integrated Optical Fiber FPI Sensor Based on Infiber Micro-Cavity and Fiber-Tip. Opt. Fiber Technol. 2018, 46, 77–82. [Google Scholar] [CrossRef]
- Shi, J.; Xu, D.; Xu, W.; Wang, Y.; Yan, C.; Zhang, D.; Yan, D.; He, Y.; Tang, L.; Zhang, W.; et al. Humidity Sensor Based on Fabryperot Interferometer and Intracavity Sensing of Fiber Laser. J. Lightwave Technol. 2017, 35, 4789–4795. [Google Scholar] [CrossRef]
- Dai, Y.; Zhao, J. Fault Diagnosis of Batch Chemical Processes Using a Dynamic Time Warping (DTW)-Based Artificial Immune System. Ind. Eng. Chem. Res. 2011, 50, 4534–4544. [Google Scholar] [CrossRef]
- Jang, S.W.; Park, Y.J.; Kim, G.Y. Efficient Handwritten Character Verification Using an Improved Dynamic Time Warping Algorithm. J. Korea Soc. Comput. Inf. 2010, 15, 19–26. [Google Scholar]
- Ganguli, A.; Saha, B.; Raghavan, A.; Kiesel, P.; Arakaki, K.; Schuh, A.; Schwartz, J.; Hegyi, A.; Sommer, L.W.; Lochbaum, A.; et al. Embedded Fiber-Optic Sensing for Accurate Internal Monitoring of Cell State in Advanced Battery Management Systems Part 2: Internal Cell Signals and Utility for State Estimation. J. Power Sour. 2017, 341, 474–482. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Thoi, T.; Cui, X.; Garg, A.; Gao, L.; Truong, T.T. An Effective Deep Neural Network Method for Prediction of Battery State at Cell and Module Level. Energy Technol. 2021, 9, 2100048. [Google Scholar] [CrossRef]
- Parekh, M.H.; Li, B.; Palanisamy, M.; Adams, T.E.; Tomar, V.; Pol, V.G. In Situ Thermal Runaway Detection in Lithium-ion Batteries with Integrated Internal. Sensor. Anal. Chem. 2017, 89, 8122–8128. [Google Scholar]
Sensor Type | Measured Parameter | Sensitivity | Resolution/Accuracy | Battery Type | Year | Ref. |
---|---|---|---|---|---|---|
FBG | external temperature | 9.97 pm/°C | 2.06 °C | cylindrical | 2021 | [79] |
external temperature | 10.3 pm/°C | 0.1 °C | cylindrical | 2018 | [57] | |
external temperature | 9.24 pm/°C | 0.11 °C | pouch | 2017 | [56] | |
external temperature | 12 pm/°C | 0.08 °C | pouch | 2021 | [78] | |
external temperature | 10 pm/°C | 0.1 °C | coin | 2013 | [49] | |
internal Temperature | 11 pm/°C | - | cylindrical | 2018 | [80] | |
external and internal temperature | 10.27 pm/°C | 0.1 °C | pouch | 2016 | [54] | |
external strain | 11.55 pm/uε | 0.09 uε | pouch | 2019 | [59] | |
internal strain | - | - | Swagelok | 2021 | [81] | |
Parallel reference FBG | external temperature and strain | 8.04 pm/°C, 1.2 pm/uε | 0.12 °C, 0.83 uε | pouch | 2018 | [58] |
Titled Fixed three FBGs | external temperature and strain | 21 pm/°C, 1.0 pm/uε | - | cylindrical | 2021 | [63] |
PM-FBG | external temperature and strain | 23.7 pm/°C, 1.2 pm/uε | 0.04°C, 0.83 uε | cylindrical | 2022 | [64] |
FBG+FPI | internal temperature and strain | 40 pm/°C, 2.2 pm/uε | 0.1 °C, 0.1 uε | pouch | 2019 | [60] |
SMF-FBG+MOF-FBG | Internal temperature and pressure | 10 pm/°C, −7.2 pm/bar | 0.1 °C, 0.14 bar | cylindrical | 2021 | [61] |
TFBG | Internal temperature and electrolyte RI | −18 nm/RIU, 10.1 pm/°C | 6 × 10−5 RIU | cylindrical | 2021 | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Zhao, Q.; Zheng, Y.; Xu, Y.; Chen, Y.; Ni, J.; Zhao, Y. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Sensors 2023, 23, 5609. https://doi.org/10.3390/s23125609
Chen D, Zhao Q, Zheng Y, Xu Y, Chen Y, Ni J, Zhao Y. Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Sensors. 2023; 23(12):5609. https://doi.org/10.3390/s23125609
Chicago/Turabian StyleChen, Dongying, Qiang Zhao, Yi Zheng, Yuzhe Xu, Yonghua Chen, Jiasheng Ni, and Yong Zhao. 2023. "Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors" Sensors 23, no. 12: 5609. https://doi.org/10.3390/s23125609
APA StyleChen, D., Zhao, Q., Zheng, Y., Xu, Y., Chen, Y., Ni, J., & Zhao, Y. (2023). Recent Progress in Lithium-Ion Battery Safety Monitoring Based on Fiber Bragg Grating Sensors. Sensors, 23(12), 5609. https://doi.org/10.3390/s23125609