The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity
Abstract
:1. Introduction
2. Mechanical Sensors
2.1. Cantilever Sensors
2.2. Membrane Sensors
3. Diffractive and Interferometric Optical Sensors
3.1. Diffractive Holographic Sensors
3.2. Optical Fiber Sensors
3.3. Photonic Crystal Sensors
4. Diffractive Optomechanical Sensors—Enhanced Sensitivity through a Combination of Technologies
5. Optical and Mechanical Sensors—Advantages, Challenges, and the Benefits of an Optomechanical Approach
5.1. Optical Sensors—Advantages and Challenges
5.2. Mechanical Sensors—Advantages and Challenges
5.3. The Benefits of an Optomechanical Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.X.J.; Hoshino, K. Mechanical transducers: Cantilevers, acoustic wave sensors, and thermal sensors. In Molecular Sensors and Nanodevices; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 311–412. [Google Scholar]
- Zhang, J.X.J.; Hoshino, K. Optical transducers: Optical molecular sensing and spectroscopy. In Molecular Sensors and Nanodevices; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 231–309. [Google Scholar]
- Zhang, J.X.J.; Hoshino, K. Electrical transducers: Electrochemical sensors and semiconductor molecular sensors. In Molecular Sensors and Nanodevices; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 181–230. [Google Scholar]
- Xiong, X.; Zhang, L.; Hu, J.; Hmurcik, L. Introducing the small world: Developing the MEMS/Nanotechnology Curriculum. In 2009 Annual Conference & Exposition Proceedings; American Water Works Assn: Denver, CO, USA, 2009. [Google Scholar]
- Liao, M. Progress in semiconductor diamond photodetectors and MEMS sensors. Funct. Diam. 2021, 1, 29–46. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Sulaiman, O.B.; Dong, B.; Lee, C. Development trends and perspectives of future sensors and MEMS/NEMS. Micromachines 2019, 11, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, Y.; Mansoor, M.; Shah, I.A. A review of principles of MEMS pressure sensing with its aerospace applications. Sensor Rev. 2019, 39, 652–664. [Google Scholar] [CrossRef]
- Maluf, N. An Introduction to Microelectromechanical Systems Engineering; Artech House: Boston, MA, USA, 2000. [Google Scholar]
- D’Alessandro, A.; Scudero, S.; Vitale, G. A review of the capacitive MEMS for seismology. Sensors 2019, 19, 3093. [Google Scholar] [CrossRef] [Green Version]
- Pujol-Vila, F.; Güell-Grau, P.; Nogués, J.; Alvarez, M.; Sepúlveda, B. Soft optomechanical systems for sensing, modulation, and Actuation. Adv. Funct. Mater. 2023, 33, 2213109. [Google Scholar] [CrossRef]
- Liu, X.; Liu, W.; Ren, Z.; Ma, Y.; Dong, B.; Zhou, G.; Lee, C. Progress of optomechanical micro/nano sensors: A Review. Int. J. Optomechatronics 2021, 15, 120–159. [Google Scholar] [CrossRef]
- Li, B.-B.; Ou, L.; Lei, Y.; Liu, Y.-C. Cavity Optomechanical sensing. Nanophotonics 2021, 10, 2799–2832. [Google Scholar] [CrossRef]
- Busch-Vishniac, I.J. Optomechanical Sensors. In Electromechanical Sensors and Actuators; Mechanical Engineering Series; Springer: Berlin/Heidelberg, Germany, 1999; pp. 250–275. [Google Scholar]
- Lopatin, C. Aerospace applications of optical fiber mechanical sensors. In Opto-Mechanical Fiber Optic Sensors; Butterworth-Heinemann: Oxford, UK, 2018; pp. 237–262. [Google Scholar]
- Lu, H.; Gu, X. Fiber Bragg grating strain sensor for microstructure in situ strain measurement and real-time failure detection. In Opto-Mechanical Fiber Optic Sensors; Butterworth-Heinemann: Oxford, UK, 2018; pp. 75–96. [Google Scholar]
- Maksymowych, M.P.; Westwood-Bachman, J.N.; Venkatasubramanian, A.; Hiebert, W.K. Optomechanical spring enhanced mass sensing. Appl. Phys. Lett. 2019, 115, 101103. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, G.; Li, S.; Cai, X.; Wei, J.; Jing, G.; Li, Y.; Zhang, Z. Integrated opto-mechanical cantilever sensor with a rib waveguide. J. Microsc. 2022, 286, 240–244. [Google Scholar] [CrossRef]
- Hu, Y.-W.; Xiao, Y.-F.; Liu, Y.-C.; Gong, Q. Optomechanical sensing with on-chip microcavities. Front. Phys. 2013, 8, 475–490. [Google Scholar] [CrossRef]
- Xia, J.; Qiao, Q.; Zhou, G.; Chau, F.S.; Zhou, G. Opto-mechanical photonic Crystal Cavities for sensing application. Appl. Sci. 2020, 10, 7080. [Google Scholar] [CrossRef]
- Venkatasubramanian, A.; Sauer, V.T.; Roy, S.K.; Xia, M.; Wishart, D.S.; Hiebert, W.K. Nano-optomechanical systems for gas chromatography. Nano Lett. 2016, 16, 6975–6981. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, A.M.; Srivastava, M.C.; Sharan, P. Integrated moems based cantilever sensor for early detection of cancer. Optik 2021, 227, 165321. [Google Scholar] [CrossRef]
- Ye, G.; Wang, X. Glucose sensing through diffraction grating of hydrogel bearing phenylboronic acid groups. Biosens. Bioelectron. 2010, 26, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, B.; Wu, B.; Hsu, C.; Wang, X. Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection. Ind. Eng. Chem. Res. 2021, 60, 4639–4649. [Google Scholar] [CrossRef]
- Cody, D.; Gul, S.-E.; Mikulchyk, T.; Irfan, M.; Kharchenko, A.; Goldyn, K.; Martin, S.; Mintova, S.; Cassidy, J.; Naydenova, I. Self-processing photopolymer materials for versatile design and fabrication of holographic sensors and interactive holograms. Appl. Opt. 2018, 57, 22. [Google Scholar] [CrossRef]
- Naydenova, I. Holographic sensors. In Optical Holography; Elsevier: Amsterdam, The Netherlands, 2020; pp. 165–190. [Google Scholar]
- Jones, E.P.; Ward, T.V.; Zwick, H.H. A fast response atmospheric CO2 sensor for Eddy Correlation Flux Measurements. Atmos. Environ. 1967 1978, 12, 845–851. [Google Scholar] [CrossRef]
- Koskinen, M.; Ahola, R.; Kostamovaara, J.; Myllyla, R. On the use of an optomechanical sensing head in time-of-flight laser rangefinding. SPIE Proc. 1988, 952, 400. [Google Scholar]
- Varesi, J.; Lai, J.; Perazzo, T.; Shi, Z.; Majumdar, A. Photothermal measurements at PICOWATT resolution using uncooled micro-optomechanical sensors. Appl. Phys. Lett. 1997, 71, 306–308. [Google Scholar] [CrossRef]
- Gorecki, C.; Sabac, A.; Bey, P.; Gut, K.; Jacobelli, A.; Dean, T. Integrated optomechanical sensor for in situ characterization of MEMS: The implementing of a readout architecture. SPIE Proc. 2003, 5145, 189–195. [Google Scholar]
- Storgaard-Larsen, T.; Bouwstra, S.; Leistiko, O. Opto-mechanical accelerometer based on strain sensing by a Bragg grating in a planar waveguide. Sens. Actuators A Phys. 1996, 52, 25–32. [Google Scholar] [CrossRef]
- Wang, T.; Bai, C.-H.; Wang, D.-Y.; Liu, S.; Zhang, S.; Wang, H.-F. Optical response based on stokes and anti-stokes scattering processes in cavity optomechanical system. Quantum Inf. Process. 2021, 20, 3. [Google Scholar] [CrossRef]
- Lai, J.; Perazzo, T.; Shi, Z.; Majumdar, A. Optimization and performance of high-resolution micro-optomechanical thermal sensors. Sens. Actuators A Phys. 1997, 58, 113–119. [Google Scholar] [CrossRef]
- McKeown, S.; Wang, X.; Yu, X.; Goddard, L. Realization of palladium-based optomechanical cantilever hydrogen sensor. Microsyst. Nanoeng. 2017, 3, 16087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, W.; Lee, C. Nanophotonics Sensor Based on Microcantilever for Chemical Analysis. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1323–1326. [Google Scholar] [CrossRef]
- Li, C.; Yang, B.; Zheng, X.; Guo, X.; Sun, Z.; Zhou, L.; Huang, X. 2 ng/√Hzresolution optomechanical accelerometer employing a three-dimensional MEMS interferometer. Opt. Lett. 2022, 47, 1883. [Google Scholar] [CrossRef] [PubMed]
- Bandari, N.; Orsini, P.; Corbeil, J.; Jarry, E.; de Denus Baillargeon, M.; Massabki, M.; Dargahi, J.; Packirisamy, M. Optomechanical Modeling and Validation of a Distributed Bragg Reflector Force Sensor with Drift and Temperature Compensation. IEEE Sens. J. 2021, 21, 2929–2941. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, K.; Liu, G.; Wang, G.; Mou, J.; Zhang, W.; Wei, G. A Terahertz Optomechanical Detector Based on Metasurface and Bi-Material Micro-Cantilevers. Micromachines 2022, 13, 805. [Google Scholar] [CrossRef]
- Zhang, C.; Qu, M.; Fu, X.; Lin, J. Review on microscale sensors with 3D engineered structures: Fabrication and applications. Small Methods 2022, 6, 2101384. [Google Scholar] [CrossRef] [PubMed]
- Raiteri, R.; Grattarola, M.; Butt, H.-J.; Skládal, P. Micromechanical cantilever-based biosensors. Sens. Actuators B Chem. 2001, 79, 115–126. [Google Scholar] [CrossRef]
- Pasquale, M. Mechanical sensors and actuators. Sens. Actuators A Phys. 2003, 106, 142–148. [Google Scholar] [CrossRef]
- Najar, F.; Ghommem, M.; Abdelkefi, A. A double-side electrically-actuated arch microbeam for pressure sensing applications. Int. J. Mech. Sci. 2020, 178, 105624. [Google Scholar] [CrossRef]
- Xiao, X.; Li, C.; Fan, S.-C.; Liu, Y.-J.; Liu, Y. Optical-thermally actuated graphene mechanical resonator for humidity sensing. Sens. Actuators B Chem. 2023, 374, 132851. [Google Scholar] [CrossRef]
- Amiot, F.; Kanoufi, F.; Hild, F.; Roger, J.P. Charge redistribution in electrochemically actuated mechanical sensors. Sens. Actuators A Phys. 2009, 152, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Raiteri, R.; Grattarola, M.; Berger, R. Micromechanics senses biomolecules. Mater. Today 2002, 5, 22–29. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, P.; Li, X. Self-assembling siloxane bilayer directly on sio2surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology 2010, 21, 265501. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.K.; Toda, M.; Inomata, N.; Maruyama, H.; Okamatsu-Ogura, Y.; Arai, F.; Ono, T.; Ishijima, A.; Inoue, Y. Temperature changes in brown adipocytes detected with a bimaterial microcantilever. Biophys. J. 2014, 106, 2458–2464. [Google Scholar] [CrossRef] [Green Version]
- Mathew, R.; Sankar, A.R. A review on surface stress-based miniaturized piezoresistive su-8 polymeric cantilever sensors. Nano-Micro Lett. 2018, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.; Li, N. Micro-cantilever array and its application in gas sensor. In Proceedings of the 2008 International Conference on Microwave and Millimeter Wave Technology, Nanjing, China, 21–25 April 2008. [Google Scholar]
- Vančura, C.; Rüegg, M.; Li, Y.; Hagleitner, C.; Hierlemann, A. Magnetically actuated complementary metal oxide semiconductor resonant cantilever gas sensor systems. Anal. Chem. 2005, 77, 2690–2699. [Google Scholar] [CrossRef]
- Wasisto, H.S.; Merzsch, S.; Waag, A.; Uhde, E.; Salthammer, T.; Peiner, E. Airborne engineered Nanoparticle Mass sensor based on a silicon resonant cantilever. Sens. Actuators B Chem. 2013, 180, 77–89. [Google Scholar] [CrossRef]
- Lang, H.P.; Hegner, M.; Gerber, C. Cantilever array sensors. Mater. Today 2005, 8, 30–36. [Google Scholar] [CrossRef]
- Basu, A.K.; Basu, A.; Bhattacharya, S. Micro/nano fabricated cantilever based Biosensor Platform: A review and recent progress. Enzym. Microb. Technol. 2020, 139, 109558. [Google Scholar] [CrossRef]
- Mamou, D.; Nsubuga, L.; Marcondes, T.L.; Høegh, S.O.; Hvam, J.; Niekiel, F.; Lofink, F.; Rubahn, H.-G.; de Oliveira Hansen, R. Surface modification enabling reproducible cantilever functionalization for industrial gas sensors. Sensors 2021, 21, 6041. [Google Scholar] [CrossRef]
- Cosofret, V.V. Pharmaceutical Applications of Membrane Sensors; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Gupta, V.K.; Nayak, A.; Agarwal, S.; Singhal, B. Recent advances on potentiometric membrane sensors for pharmaceutical analysis. Comb. Chem. High Throughput Screen. 2011, 14, 284–302. [Google Scholar] [CrossRef] [PubMed]
- Cummings, W.G.; Torrance, K.; Verhappen, I. Chemical analysis. In Instrumentation Reference Book; Butterworth-Heinemann: Oxford, UK, 2010; pp. 363–399. [Google Scholar]
- Yuan, Y.; DeBrosse, M.; Brothers, M.; Kim, S.; Sereda, A.; Ivanov, N.V.; Hussain, S.; Heikenfeld, J. Oil-membrane protection of electrochemical sensors for fouling- and ph-insensitive detection of lipophilic analytes. ACS Appl. Mater. Interfaces 2021, 13, 53553–53563. [Google Scholar] [CrossRef] [PubMed]
- Satyanarayana, S.; McCormick, D.T.; Majumdar, A. Parylene micro membrane capacitive sensor array for chemical and biological sensing. Sens. Actuators B Chem. 2006, 115, 494–502. [Google Scholar] [CrossRef]
- Podgolin, S.K.; Petukhov, D.I.; Dorofeev, S.G.; Eliseev, A.A. Anodic alumina membrane capacitive sensors for detection of vapors. Talanta 2020, 219, 121248. [Google Scholar] [CrossRef]
- Su, Y.; Wang, J.; Wang, B.; Yang, T.; Yang, B.; Xie, G.; Zhou, Y.; Zhang, S.; Tai, H.; Cai, Z.; et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020, 14, 6067–6075. [Google Scholar] [CrossRef] [PubMed]
- Drobek, M.; Kim, J.-H.; Bechelany, M.; Vallicari, C.; Julbe, A.; Kim, S.S. MOF-based membrane encapsulated zno nanowires for enhanced gas sensor selectivity. ACS Appl. Mater. Interfaces 2016, 8, 8323–8328. [Google Scholar] [CrossRef]
- Tran, A.V.; Zhang, X.; Zhu, B. The development of a new piezoresistive pressure sensor for low pressures. IEEE Trans. Ind. Electron. 2018, 65, 6487–6496. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Y.; Qing, X. A flexible capacitive sensor based on the electrospun PVDF nanofiber membrane with carbon nanotubes. Sens. Actuators A Phys. 2019, 299, 111579. [Google Scholar] [CrossRef]
- Hernández-Rivera, D.; Rodríguez-Roldán, G.; Mora-Martínez, R.; Suaste-Gómez, E. A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors 2017, 17, 1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özbek, O.; Isildak, Ö. Potentiometric PVC membrane sensor for the determination of anti-epileptic drug Levetiracetam in pharmaceutical formulations. ChemistrySelect 2022, 7, 3. [Google Scholar] [CrossRef]
- Agrawal, A.R.; Chowdhury, M.D.; Pluchar, C.M.; Wilson, D. Membrane-based optomechanical accelerometry. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 15–20 May 2021. [Google Scholar]
- Ismaeel, R.; Beaton, A.; Donko, A.; Talataisong, W.; Lee, T.; Brotin, T.; Beresna, M.; Mowlem, M.; Brambilla, G. High sensitivity all-fibre methane sensor with gas permeable eflon/cryptophane-a membrane. In Proceedings of the 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 23–27 June 2019. [Google Scholar]
- Zhao, Y.; Yuan, Y.; Gan, W.; Yang, M. Optical fiber fabry–Perot humidity sensor based on polyimide membrane: Sensitivity and adsorption kinetics. Sens. Actuators A Phys. 2018, 281, 48–54. [Google Scholar] [CrossRef]
- Mikulchyk, T.; Walshe, J.; Cody, D.; Martin, S.; Naydenova, I. Humidity and temperature induced changes in the diffraction efficiency and the Bragg angle of slanted photopolymer-based holographic gratings. Sens. Actuators B Chem. 2017, 239, 776–785. [Google Scholar] [CrossRef] [Green Version]
- Naydenova, I.; Jallapuram, R.; Toal, V.; Martin, S. A visual indication of environmental humidity using a color changing hologram recorded in a self-developing photopolymer. Appl. Phys. Lett. 2008, 92, 031109. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.; Blyth, J.; Davidson, C.; Lowe, C. pH-Sensitive Holographic Sensors. Anal. Chem. 2003, 75, 4423–4431. [Google Scholar] [CrossRef]
- Blyth, J.; Millington, R.; Mayes, A.; Frears, E.; Lowe, C. Holographic Sensor for Water in Solvents. Anal. Chem. 1996, 68, 1089–1094. [Google Scholar] [CrossRef]
- Kim, I.; Kim, W.; Kim, K.; Ansari, M.; Mehmood, M.; Badloe, T.; Kim, Y.; Gwak, J.; Lee, H.; Kim, Y.; et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci. Adv. 2021, 7, 15. [Google Scholar] [CrossRef]
- Naydenova, I.; Grand, J.; Mikulchyk, T.; Martin, S.; Toal, V.; Georgieva, V.; Thomas, S.; Mintova, S. Hybrid sensors fabricated by inkjet printing and holographic patterning. Chem. Mater. 2015, 27, 6097–6101. [Google Scholar] [CrossRef]
- Leite, E.; Naydenova, I.; Mintova, S.; Leclercq, L.; Toal, V. Photopolymerizable nanocomposites for holographic recording and sensor application. Appl. Opt. 2010, 49, 3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Yu, D.; Zhou, K.; Mao, D.; Liu, L.; Wang, H.; Wang, W.; Song, Q. Temperature-induced spectrum response of volume grating as an effective strategy for holographic sensing in acrylamide polymer part I: Sensing. Appl. Opt. 2016, 55, 9907. [Google Scholar] [CrossRef]
- Irfan, M.; Martin, S.; Naydenova, I. Temperature-Sensitive Holograms with Switchable Memory. Adv. Photonics Res. 2021, 2, 2100062. [Google Scholar] [CrossRef]
- Martínez-Hurtado, J.; Davidson, C.; Blyth, J.; Lowe, C. Holographic Detection of Hydrocarbon Gases and Other Volatile Organic Compounds. Langmuir 2010, 26, 15694–15699. [Google Scholar] [CrossRef] [PubMed]
- Naydenova, I.; Jallapuram, R.; Toal, V.; Martin, S. Characterisation of the humidity and temperature responses of a reflection hologram recorded in acrylamide-based photopolymer. Sens. Actuators B Chem. 2009, 139, 35–38. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, D.; Zhou, K.; Wang, S.; Luo, S.; Li, L.; Wang, W.; Song, Q. Novel pH-sensitive photopolymer hydrogel and its holographic sensing response for solution characterization. Opt. Laser Technol. 2018, 101, 257–267. [Google Scholar] [CrossRef]
- Jiao, X.; Liu, H.; Wang, B.; Wang, R.; Li, L. Pressure-dependent diffraction spectrum response in photopolymer-based holographic sensor. Appl. Opt. 2019, 58, 8302. [Google Scholar] [CrossRef]
- Cody, D.; Naydenova, I. Theoretical modeling and design of photonic structures in zeolite nanocomposites for gas sensing Part II: Volume gratings. J. Opt. Soc. Am. A 2017, 35, 12. [Google Scholar] [CrossRef]
- Pathak, A.; Viphavakit, C. A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sens. Actuators A Phys. 2022, 338, 113455. [Google Scholar] [CrossRef]
- Udd, E. Overview of Fiber Optic Sensors; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–34. [Google Scholar]
- Miliou, A. In-fiber interferometric-based sensors: Overview and recent advances. Photonics 2021, 8, 265. [Google Scholar] [CrossRef]
- Marzuarman; Rivai, M.; Sardjono, T.A.; Purwanto, D. Investigation of Michelson interferometer for Volatile Organic Compound Sensor. J. Phys. Conf. Ser. 2017, 853, 012017. [Google Scholar] [CrossRef]
- Chen, Z.; Xiong, S.; Gao, S.; Zhang, H.; Wan, L.; Huang, X.; Huang, B.; Feng, Y.; Liu, W.; Li, Z. High-temperature sensor based on Fabry-Perot interferometer in microfiber tip. Sensors 2018, 18, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Wang, X.; Ding, J.; Yan, X.; Zhao, Z.; Zhang, Z. SNO2/graphene incorporated Optical Fiber Mach-Zehnder interferometer for Methane Gas Detection. Opt. Fiber Technol. 2022, 74, 103126. [Google Scholar] [CrossRef]
- Subashini, T.; Renganathan, B.; Stephen, A.; Prakash, T. Acetone sensing behaviour of optical fiber clad-modified with γ-cubr nanocrystals. Mater. Sci. Semicond. Process. 2018, 88, 181–185. [Google Scholar] [CrossRef]
- Tabassum, S.; Kumar, D.P.; Kumar, R. Copper complex-coated nanopatterned fiber-tip guided mode resonance device for selective detection of ethylene. IEEE Sens. J. 2021, 21, 17420–17429. [Google Scholar] [CrossRef]
- Pan, R.; Yang, W.; Li, L.; Yang, Y.; Zhang, L.; Yu, X.; Fan, J.; Yu, S.; Xiong, Y. A high-sensitive fiber-optic Fabry-Perot sensor with parallel polymer-air cavities based on vernier effect for simultaneous measurement of pressure and temperature. IEEE Sens. J. 2021, 21, 21577–21585. [Google Scholar] [CrossRef]
- Lee, B.; Lee, Y.W.; Song, M. Principles and status of actively researched optical fiber sensors. In Guided Wave Optical Components and Devices; Academic Press: Cambridge, MA, USA, 2006; pp. 401–424. [Google Scholar]
- McKnight, M.; Agcayazi, T.; Ghosh, T.; Bozkurt, A. Fiber-based sensors. In Wearable Technology in Medicine and Health Care; Academic Press: Cambridge, MA, USA, 2018; pp. 153–171. [Google Scholar]
- Jędrzejewska-Szczerska, M.; Majchrowicz, D.; Hirsch, M.; Struk, P.; Bogdanowicz, R.; Bechelany, M.; Tuchin, V.V. Nanolayers in fiber-optic biosensing. In Nanotechnology and Biosensors; Elsevier: Amsterdam, The Netherlands, 2018; pp. 395–426. [Google Scholar]
- Othonos, A. Fiber Bragg gratings. Rev. Sci. Instrum. 1997, 68, 4309–4341. [Google Scholar] [CrossRef]
- Mihailov, S.J. Fiber Bragg grating sensors for Harsh Environments. Sensors 2012, 12, 1898–1918. [Google Scholar] [CrossRef]
- Mishra, S.; Sharan, P.; Saara, K. Optomechanical behaviour of optical sensor for measurement of wagon weight at different speeds of the train. J. Opt. 2023, 52, 751–762. [Google Scholar] [CrossRef]
- Dong, X.; Liu, Y.; Liu, Z.; Dong, X. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Opt. Commun. 2001, 192, 213–217. [Google Scholar] [CrossRef]
- Shao, J.; Liu, G.; Zhou, L. Biomimetic nanocoatings for structural coloration of textiles. In Active Coatings for Smart Textiles; Woodhead Publishing: Delhi, India, 2016; pp. 269–299. [Google Scholar]
- Schmidt, W.; Schüth, F.; Weidenthaler, C. Diffraction and spectroscopy of porous solids. Compr. Inorg. Chem. 2013, II, 1–24. [Google Scholar]
- Nair, R.V.; Vijaya, R. Photonic Crystal Sensors: An overview. Prog. Quantum Electron. 2010, 34, 89–134. [Google Scholar] [CrossRef]
- Troia, B.; Paolicelli, A.; De, F.; Passaro, V.M.N. Photonic crystals for Optical Sensing: A Review. In Advances in Photonic Crystals; In-Tech: Hong Kong, China, 2013. [Google Scholar]
- Asri, M.I.; Hasan, M.N.; Fuaad, M.R.; Yunos, Y.M.; Ali, M.S. MEMS Gas Sensors: A Review. IEEE Sens. J. 2021, 21, 18381–18397. [Google Scholar] [CrossRef]
- Ashraf, A.; Saha, P. A 2D slotted photonic crystal cavity-based optical methane sensor with increased selectivity. In Proceedings of the 2020 IEEE Students Conference on Engineering & Systems (SCES), Online, 10–12 July 2020. [Google Scholar]
- Fenzl, C.; Wilhelm, S.; Hirsch, T.; Wolfbeis, O.S. Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 2012, 5, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Fenzl, C.; Hirsch, T.; Wolfbeis, O. Photonic crystal based sensor for organic solvents and for solvent-water mixtures. Sensors 2012, 12, 16954–16963. [Google Scholar] [CrossRef] [Green Version]
- Afsari, A.; Sarraf, M.J.; Khatib, F. Application of tungsten oxide thin film in the photonic crystal cavity for hydrogen sulfide gas sensing. Optik 2021, 227, 165664. [Google Scholar] [CrossRef]
- Ayyanar, N.; Raja, G.T.; Sharma, M.; Kumar, D.S. Photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 2018, 18, 7093–7099. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Q.; Zheng, X. Flexible mechanochromic photonic crystals: Routes to visual sensors and their mechanical properties. J. Mater. Chem. C 2018, 6, 3182–3199. [Google Scholar] [CrossRef]
- Grogan, C.; McGovern, F.; Staines, R.; Amarandei, G.; Naydenova, I. Cantilever-Based Sensor Utilizing a Diffractive Optical Element with High Sensitivity to Relative Humidity. Sensors 2021, 21, 1673. [Google Scholar] [CrossRef]
- Yu, D.; Liu, Q.; He, Y.; Liu, H.; Luo, S. Bending deformation characterization of a holographic sensor based on a flexible substrate. Opt. Laser Technol. 2021, 143, 107374. [Google Scholar] [CrossRef]
- Yaralioglu, G.G.; Atalar, A.; Manalis, S.R.; Quate, C.F. Analysis and design of an interdigital cantilever as a displacement sensor. J. Appl. Phys. 1998, 83, 7405–7415. [Google Scholar] [CrossRef] [Green Version]
- Sarioglu, A.F.; Solgaard, O. Cantilevers with integrated sensor for time-resolved force measurement in tapping-mode atomic force microscopy. Appl. Phys. Lett. 2008, 93, 023114. [Google Scholar] [CrossRef]
- Ozturk, A.; Ocakli, H.I.; Ozber, N.; Urey, H.; Kavakli, I.H.; Alaca, B.E. A magnetically actuated resonant mass sensor with integrated optical readout. IEEE Photonics Technol. Lett. 2008, 20, 1905–1907. [Google Scholar] [CrossRef] [Green Version]
- Tian, K.; Liu, Y.; Wang, Q. Temperature-independent fiber Bragg grating strain sensor using bimetal cantilever. Opt. Fiber Technol. 2005, 11, 370–377. [Google Scholar] [CrossRef]
- Nazeer, N.; Groves, R.M. Load monitoring of a cantilever plate by a novel multimodal fibre optic sensing configuration. SN Appl. Sci. 2021, 3, 6. [Google Scholar] [CrossRef]
- Abushagur, A.A.; Arsad, N.; Bakar, A.A. Cantilever beam with a single fiber Bragg grating to measure temperature and transversal force simultaneously. Sensors 2021, 21, 2002. [Google Scholar] [CrossRef]
- Guo, T.; Zhao, Q.; Dou, Q.; Zhang, H.; Xue, L.; Huang, G.; Dong, X. Temperature-insensitive fiber Bragg grating liquid-level sensor based on bending cantilever beam. IEEE Photonics Technol. Lett. 2005, 17, 2400–2402. [Google Scholar]
- Liu, S.; Chen, P.; Luo, J.; Chen, Y.; Liu, B.; Xiao, H.; Yan, W.; Ding, W.; Bai, Z.; He, J.; et al. Nano-optomechanical resonators based graphene/AU membrane for current sensing. J. Light. Technol. 2022, 40, 7200–7207. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zappe, S.; Bernstein, R.W.; Sahin, O.; Chen, C.-C.; Fish, M.; Scott, M.; Solgaard, O. Integrated Optical diffractive micrograting-based injection force sensor. In Proceedings of the TRANSDUCERS ‘03. 12th International Conference on Solid-State Sensors, Actuators and Microsystems, Boston, MA, USA, 8–12 June 2003. [Google Scholar]
- Nazirizadeh, Y.; Karrock, T.; Gerken, M. Visual device for pressure measurement using photonic crystal slabs. Opt. Lett. 2012, 37, 3081. [Google Scholar] [CrossRef]
- Mai, T.T.; Hsiao, F.-L.; Lee, C.; Xiang, W.; Chen, C.-C.; Choi, W.K. Optimization and comparison of photonic crystal resonators for silicon microcantilever sensors. Sens. Actuators A Phys. 2011, 165, 16–25. [Google Scholar] [CrossRef]
- Tung, B.T.; Dao, D.V.; Ikeda, T.; Kanamori, Y.; Hane, K.; Sugiyama, S. Investigation of strain sensing effect in modified single-defect photonic crystal nanocavity. Opt. Express 2011, 19, 8821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, S.; Hu, Y.; Jiang, N.; Blyth, J.; Kaminska, M.; Liu, Y.; Yetisen, A.K. Holographic Sensors in Biotechnology. Adv. Funct. Mater. 2021, 31, 47. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Naydenova, I.; Da Cruz Vasconcellos, F.; Blyth, J.; Lowe, C.R. Holographic sensors: Three-dimensional analyte-sensitive nanostructures and their applications. Chem. Rev. 2014, 114, 10654–10696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, Z.; He, X.; Rao, Y.; Sun, D.; Qin, X.; Zeng, D.; Chu, W.; Li, X.; Wei, Y. Fiber-Optic Microstructure Sensors: A Review. Photonic Sens. 2021, 11, 227–261. [Google Scholar] [CrossRef]
- Allsop, T.; Neal, R. A review: Application and implementation of optic fibre sensors for gas detection. Sensors 2021, 21, 20. [Google Scholar] [CrossRef]
- Khan, S.; Le Calvé, S.; Newport, D. A review of optical interferometry techniques for VOC detection. Sens. Actuators A Phys. 2020, 302, 111782. [Google Scholar] [CrossRef]
- Sahota, J.K.; Gupta, N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 6. [Google Scholar] [CrossRef]
- Fu, D.; Zhang, Y.N.; Zhang, A.; Han, B.; Wu, Q.; Zhao, Y. Novel Fiber Grating for Sensing Applications. Phys. Status Solidi A Appl. Mater. Sci. 2019, 216, 6. [Google Scholar] [CrossRef]
- Shadab, A.; Raghuwanshi, S.K.; Kumar, S. Advances in Micro-Fabricated Fiber Bragg Grating for Detection of Physical, Chemical, and Biological Parameters-A Review. IEEE Sens. J. 2022, 22, 15650–15660. [Google Scholar] [CrossRef]
- Li, T.; Liu, G.; Kong, H.; Yang, G.; Wei, G.; Zhou, X. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 2023, 475, 214909. [Google Scholar] [CrossRef]
- Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef] [PubMed]
- Parandin, F.; Heidari, F.; Rahimi, Z.; Olyaee, S. Two-Dimensional photonic crystal Biosensors: A review. Opt. Laser Technol. 2021, 144, 107397. [Google Scholar] [CrossRef]
- Evans, D.R.; Craig, V.S. Sensing cantilever beam bending by the optical lever technique and its application to surface stress. J. Phys. Chem. B 2006, 110, 5450–5461. [Google Scholar] [CrossRef] [PubMed]
- Alunda, B.O.; Lee, Y.J. Review: Cantilever-based sensors for High Speed Atomic Force Microscopy. Sensors 2020, 20, 4784. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Albri, F.; Maier, R.R.; Shu, W.; Sun, J.; Hand, D.P.; MacPherson, W.N. A micro-machined optical fiber cantilever as a miniaturized ph sensor. IEEE Sens. J. 2015, 15, 7221–7228. [Google Scholar]
- Boisen, A.; Thundat, T. Design & Fabrication of cantilever array biosensors. Mater. Today 2009, 12, 32–38. [Google Scholar] [CrossRef]
- Ligler, F.S.; Rowe, T.C.A.; Alvarez, M.; Zinoviev, K.; Moreno, M.; Lechuga, L.M. Cantilever Biosensors. In Optical Biosensors Today and Tomorrow; Elsevier: Amsterdam, The Netherlands, 2008; pp. 419–452. [Google Scholar]
- Sahu, M. Simulation of static mode and dynamic mode of Microcantilever structures. Int. J. Adv. Eng. Res. Dev. 2016, 3, 3. [Google Scholar]
- Vasagiri, S.; Burra, R.K.; Vankara, J.; Patnaik, M.S.P.K. A survey of MEMS cantilever applications in determining volatile organic compounds. AIP Adv. 2022, 12, 030701. [Google Scholar] [CrossRef]
- Bogue, R. MEMS sensors: Past, present and future. Sens. Rev. 2007, 27, 7–13. [Google Scholar] [CrossRef]
- Alimenti, F.; Palazzi, V.; Simoncini, G.; Salvati, R.; Cicioni, G.; Roselli, L.; Mezzanotte, P. A wireless MEMS humidity sensor based on a paper-aluminium Bimorph cantilever. In Proceedings of the 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 7–25 June 2021. [Google Scholar] [CrossRef]
- Zouache, T.; Hocini, A. A 2D photonic crystal indium arsenide based with dual micro-cavities coupled to a waveguide as a platform for a high sensitivity pressure sensor. Opt. Quantum Electron. 2023, 55, 3. [Google Scholar] [CrossRef]
Sensor Type | Analyte | Sensitivity | Ref. |
---|---|---|---|
Micro-Optomechanical Cantilever | Thermal | 0.035 mW−1 Resolution: 2 μK | [32] |
Palladium-based Optomechanical Cantilever | Hydrogen | Detection Limit < 250 ppm | [33] |
Nanophotonic Sensor based on Microcantilever | Chemical Sensor | Minimum detectable displacement—0.6 μm (water) 0.812 μm (air) | [34] |
Optomechanical MEMS Interferometer | Acceleration | 893.23 μm/g (mechanical) 15,874 V/g (voltage) | [35] |
Optomechanical Bragg Reflector | Force | 6.5 MHz/N | [36] |
Bi-Material Micro-Cantilever | Temperature | 28.4 μm/μW | [37] |
Sensor Type | Sensor Principle | Analyte | Sensitivity | Ref. |
---|---|---|---|---|
Sensing Bilayer on Microcantilever | Static (Piezoresistor) | Trace Explosives | Exhibited Response to 0.1 ppb TNT Vapour | [45] |
Bimaterial Microcantilever | Static | Temperature Changes in Brown Adipocytes | Possible to measure < 1 K | [46] |
Microcantilever Array | Static | Gas (Ethanol/Butane) | 100–1000 ppm | [48] |
Magnetically Actuated Resonant Cantilever | Dynamic | Gas | 1.2 ppm (Limit of Detection for Toluene) | [49] |
Silicon Resonant Cantilever | Dynamic | Airborne Nanoparticles | Mass Sensitivity—10 Hz/ng | [50] |
Sensor Type | Sensor Principle | Analyte | Sensitivity | Ref. |
---|---|---|---|---|
Membrane Encapsulated ZnO Nanowires | Membrane acts as selective barrier to MOF sensor | Gas | Tested for 10, 30 & 50 ppm H2 | [61] |
Cross Beam Membrane and Peninsula Diaphragm | Piezoresistive Sensor | Pressure | 25.7 mV/kPa | [62] |
Flexible Capacitive Sensor | Nanofiber Membrane with changing electrode distance | Pressure | ~0.99/kPa | [63] |
PVDF/Graphene Membrane | Capacitive Sensor based on changing dielectric properties | Humidity | Depending on Material: 0.0099–0.0463 pF/%RH | [64] |
PVC Membrane Sensor | Potentiometric Sensor | Anti-Epileptic Drug Levetiracetam | Detection Limit: 6.31 × 10−6 molL−1 | [65] |
Holographic Material | Analyte | Principle | Readout | Sensitivity | Ref. |
---|---|---|---|---|---|
Acrylamide Photopolymer | Temperature | Volume change in material/Decrease in refractive index | Peak Wavelength Shift | −0.743 to −2.323 nm/°C (depending on relative humidity) | [76] |
Acrylamide/N-Isopropanol acrylamide Photopolymer | Temperature | Change in grating thickness/Refractive index modulation | Diffraction Efficiency (DE)/Spectral Change | 24% decrease (NIPA) 2% decrease (AA) in DE at 60 °C | [77] |
Sylgard 184 PDMS | Hydrocarbons (Gas) | Change in fringe spacing in presence of analyte | Reflection hologram colour change | Detection limit of ~5% (v/v) | [78] |
Acrylamide Photopolymer | Humidity | Material volume change | Shift in peak wavelength | 114 ± 3 nm/mg | [79] |
PHEMA Hydrogel | pH | Swelling and shrinking resulting in change of grating spacing | Shift in peak wavelength | From pH 4–pH 7, max. shift at steady state >150 nm in linear region | [80] |
Acrylamide Photopolymer | Pressure | Material volume change | Shift in peak wavelength | 4.9 × 103 Pa/nm | [81] |
Sensor Type | Analyte | Sensitivity | Ref. |
---|---|---|---|
Michelson Interferometer | Ethanol & Benzene | Tested for Ethanol: 1611–32,210 ppm Benzene: 964–19,290 ppm | [86] |
Fabry–Perot Interferometer | High Temperature Sensing | 13.6 pm/°C | [87] |
Mach–Zehnder Interferometer | Methane | Transmission spectrum increases 1.033 dB from 0–34.3% Methane | [88] |
Absorption (Refractive index change) | Acetone | 14.3% greater than ammonia & 7.4% greater than ethanol | [89] |
Nanopatterned Fiber-Tip | Ethylene | Detection Limit ~4.7 ppm | [90] |
Fabry–Perot Interferometer | Pressure and Temperature | Pressure: −36.93 nm/MPa Temperature: 10.29 nm/°C | [91] |
Sensor Type | Analyte | Sensitivity | Ref. |
---|---|---|---|
2D Slotted Photonic Crystal Cavity-Based Sensor | Methane | 614 nm/RIU | [104] |
Photonic Crystal Hydrogel Matrix | Ionic Strength (pH) | 0.03 logarithmic units (From 10−4–10−2 mol∙L−1) | [105] |
Doped PDMS Photonic Crystal Sensor | Solvents | 2 nm shift for 1% (v/v) CH3OH | [106] |
Photonic Crystal Cavity | Hydrogen Sulfide | 2.3 × 105 nm/RIU | [107] |
Photonic Crystal Fiber-Based Sensor | Cancer Cells | Detection Limit of 0.024 | [108] |
Sensor Type | Mechanical Principle | Optical Principle | Analyte | Sensitivity | Ref. |
---|---|---|---|---|---|
Bimaterial Cantilever | Static Deflection Cantilever (fixed end deflection) | Holographic Transmission Diffraction Grating | Relative Humidity (RH) | Mechanical: 1% RH Optical: 0.1% RH | [110] |
Bimaterial Cantilever | Static Deflection Cantilever (free cantilever bending) | Holographic Reflection Diffraction Grating | Not Functionalized | Average: 22.42 nm/degree | [111] |
AFM Cantilever | Static Deflection in contact with sample (AFM Contact mode) | Interdigital Optical Diffraction Grating | AFM Measurements | More sensitive than optical lever AFM configuration | [112] |
AFM Cantilever | Dynamic-Mode Cantilever (AFM Tapping mode) | Interdigital Diffraction Grating | AFM Measurements | Can detect Displacements of 1 nm or less | [113] |
Nickel Cantilever | Dynamic-Mode Cantilever | Diffraction Grating | Mass | Resolution: 500 fg | [114] |
Fiber Bragg/Bimaterial Cantilever | Static Deflection Cantilever | Fiber Bragg Grating | Strain | N/A (Paper focuses on temperature independence of sensing platform) | [115] |
Fiber Bragg Grating | Large Cantilever Plate | Fiber Bragg Grating | Cantilever plate load | Load position estimated within 9% accuracy | [116] |
Cantilever Beam with Single Fiber Bragg Grating | Static Deflection Cantilever | Fiber Bragg Grating | Temperature and Transversal Force | Responsivity Ratio: 0.0107 nm/°C | [117] |
Fiber Bragg Grating based on a Bending Cantilever Beam | Bending Cantilever Beam | Fiber Bragg Grating | Liquid Level | For liquid level variation of 500 mm (from 0–80 °C) < 2% fluctuation in measured level | [118] |
Cantilever-Based Fiber Bragg Sensor | Static Deflection Cantilever | Fiber Bragg Grating | Displacement and Temperature | Displacement: 8.22 × 10−4 mm−1 Temperature: 8.86 × 10−5 (°C)−1 | [98] |
Nano–Optomechaical Resonator Based Membrane | Membrane | Fabry—Perot Cavity | Current | 7.91 & 18.04 Hz/mA2 monitoring first and second order vibrational modes | [119] |
Micrograting-Based Injection Force Sensor | Membrane | Transmission Phase Grating | Force | Not Reported | [120] |
Photonic Crystal Slab | Membrane | Photonic Crystal | Pressure | For 2 kPa: 1.25 mm/kPa For 8 kPa: 0.17 mm/kPa | [121] |
Photonic Crystal Resonators for Silicon Microcantilevers | Static Deflection Cantilever | Photonic Crystal | Force and Strain | Minimum Detectable: Force: 0.0757 μN Strain: 0.0023% | [122] |
Single—Defect Photonic Crystal Nanocavity | Static Deflection Cantilever | 2D Photonic Crystal | Strain | Measured Shift: 0.95 pm/10−6 strain | [123] |
Sensor Type | Advantages | Challenges |
---|---|---|
Holographic | Electromagnetic insensitivity, compact size, simple fabrication, possibility for mass production, use as colorimetric devices | High angular dependence, cross-sensitivity with temperature and humidity, small sensing area |
Fiber Optic/FBG | Electromagnetic insensitivity, lightweight, operate at telecommunications wavelengths, light does not propagate in free space | Easily deformable affecting output, cross-sensitivity to temperature, demodulation of interference spectrum, requires additional cladding |
Photonic Crystals | Electromagnetic insensitivity, broad sensing area, ease of interrogation, 3D structures’ porosity advantageous for gas sensing, ability for use as colorimetric devices | Angular dependence requires maintaining incident angle throughout measurement, cross-sensitivity with humidity (3D in particular), cross-sensitivity with strain and temperature |
Sensor Type | Advantages | Challenges |
---|---|---|
Static Deflection Cantilever | Mass production and miniaturization possible, can operate without actuation, electromagnetic insensitivity, highly adaptable platform, well-defined theoretical models for parameters affecting sensitivity. | Cross-sensitivity with temperature, could requires hardware (see optical lever method) for readout, complex array format required for selectivity. |
Dynamic Resonance Cantilever | Mass production and miniaturization possible, very sensitive to mass, no direct requirement for functionalizing bilayer, highly adaptable platform, well-defined theoretical models for parameters affecting sensitivity. | Lower Q factor when operating in liquid, requires actuation of some kind for operation, often affected by electromagnetic and temperature cross-sensitivity, complex array format required for selectivity. |
Mechanical Membrane | Adaptable sensing platform, functionalization not necessarily required, generally simple principle of operation/fabrication. | Cannot operate in isolation, i.e., coupling with another sensing method generally required, more research required on optimized parameters and mechanical properties for highest sensitivity. |
Mechanical Transducer | Optical Transducer | Benefits of Coupling |
---|---|---|
Static Deflection Cantilever | Holographic Diffraction Grating | Improves resolution of detection of cantilever deflection. In transmission mode allows for Bragg angle detuning—not possible in conventional holographic sensor. In reflection mode, cantilever bending allows for bigger change in grating fringe spacing than conventional reflection sensing. |
Interdigital Finger Diffraction Grating | Enhances sensitivity compared with optical lever techniques for AFM cantilever sensing. In addition, insensitive to pointing fluctuations in laser and thermally induced mechanical vibrations. Simpler alignment when used in an array. | |
Fiber Bragg Grating | Reduced cross-sensitivity with temperature. Can be coupled with cantilevers in novel configuration to detect load position on cantilever. Ability to discern between transversal force and temperature. | |
Photonic Crystal | Photonic crystal capable of detecting loading on cantilever with linear response. Can be integrated on small structures. Smaller effect of noises on the sensor. | |
Dynamic Resonance Cantilever | Interdigital Finger Diffraction Grating | Lower signal-to-noise ratio, reduced cross-talk between cantilever vibrations and tip movement. |
Diffraction Grating | Immunity to environmental noise. Measurements can be taken with a single photodetector due to beams with slightly different resonance frequency. | |
Mechanical Membrane | Fabry—Perot Cavity | Enhanced sensitivity. Low power consumption. Compact size. Adaptable sensing platform, possible functionalization for multiple analytes. |
Transmission Grating | Allows for coupled measurement of both grating and membrane deformation position. | |
Photonic Crystal | Novel configuration, further investigation required. Non-contact sensor. Miniaturization Possible |
Sensor Type | Analyte | Sensitivity | Advantages | Challenges | Ref. |
---|---|---|---|---|---|
Mechanical (Cantilever) | Humidity | 3.7 MHz/%RH | Low cost, simple fabrication | Fabrication reproducibility quite low | [143] |
Mechanical (Membrane) | Humidity | Depending on Material: 0.0099–0.0463 pF/%RH | High sensitivity, linear response | Complex fabrication and readout requirements | [64] |
Optical (Holographic) | Humidity | 114 ± 3 nm/mg | Low cost, size, simple readout | Cross-sensitivity with temperature | [79] |
Optomechanical (Cantilever + Holographic Diffraction Grating) | Humidity | LOD: 0.1% RH | Low cost, simple readout, user friendly | Cross-sensitivity with other gaseous analytes | [110] |
Mechanical (Membrane) | Pressure | ~0.99/kPa | Fast response, loading/unloading stability | Complex fabrication and readout | [63] |
Optical (Fiber Optic) | Pressure | −36.93 nm/MPa | Simultaneous temperature measurement, compact structure | Complex fabrication and readout | [91] |
Optical (Photonic Crystal) | Pressure | 26.1 nm/Gpa | Good quality factors, perfect linear relationship between cutoff wavelength and pressure | Proposed Sensor | [144] |
Optomechanical (Membrane + Photonic Crystal) | Pressure | For 2 kPa: 1.25 mm/kPa For 8 kPa: 0.17 mm/kPa | Transparent, miniaturization possible | Complex Readout | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGovern, F.R.; Hernik, A.; Grogan, C.; Amarandei, G.; Naydenova, I. The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity. Sensors 2023, 23, 5711. https://doi.org/10.3390/s23125711
McGovern FR, Hernik A, Grogan C, Amarandei G, Naydenova I. The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity. Sensors. 2023; 23(12):5711. https://doi.org/10.3390/s23125711
Chicago/Turabian StyleMcGovern, Faolan Radford, Aleksandra Hernik, Catherine Grogan, George Amarandei, and Izabela Naydenova. 2023. "The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity" Sensors 23, no. 12: 5711. https://doi.org/10.3390/s23125711
APA StyleMcGovern, F. R., Hernik, A., Grogan, C., Amarandei, G., & Naydenova, I. (2023). The Development of Optomechanical Sensors—Integrating Diffractive Optical Structures for Enhanced Sensitivity. Sensors, 23(12), 5711. https://doi.org/10.3390/s23125711