New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion
Abstract
:1. Introduction
2. The Applications of IMU Sensor in Observing Motion
2.1. Estimation of Sensor Fusion
2.2. Zero-Velocity Detector
2.3. Extended Kalman Filter
3. Novel Model Tracking Joints
3.1. Developing a Mathematical Model
3.2. Simulation of Position of Joints
3.3. Experiment for Verification via Camera
4. Results and Discussions
4.1. IMU Signal Results at the Arm
4.2. Results Observed on the X-Y Plane
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Scotton, D. Arthritis by the numbers. Arthritis Found. 2019, 3, 1–70. Available online: https://www.arthritis.org/getmedia/e1256607-fa87-4593-aa8a-8db4f291072a/2019-abtn-final-march-2019.pdf (accessed on 21 April 2023).
- Papi, E.; Belsi, A.; McGregor, A.H. A knee monitoring device and the preferences of patients living with osteoarthritis: A qualitative study. BMJ Open 2015, 5, e007980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mow, V.C.; Lai, W.M. Recent developments in synovial joint biomechanics. SIAM Rev. 1980, 22, 275–317. [Google Scholar] [CrossRef]
- Hui, A.Y.; McCarty, W.J.; Masuda, K.; Firestein, G.S.; Sah, R.L. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 15–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New Insight on Its Pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef]
- Lambova, S.N. Knee Osteoarthritis—How Close Are We to Disease-Modifying Treatment: Emphasis on Metabolic Type Knee Osteoarthritis. Life 2023, 13, 140. [Google Scholar] [CrossRef]
- Lima, W.S.; Souto, E.; El-Khatib, K.; Jalali, R.; Gama, J. Human activity recognition using inertial sensors in a smartphone: An overview. Sensors 2019, 19, 3213. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey. Pattern Recognit. Lett. 2019, 119, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Choujaa, D.; Dulay, N. Activity Recognition from Mobile Phone Data: State of the Art, Prospects and Open Problems. Imp. Coll. Lond. 2009, 5, 32. Available online: www.cityware.org.uk (accessed on 21 April 2023).
- Chen, L.; Hoey, J.; Nugent, C.D.; Cook, D.J.; Yu, Z. Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. C 2012, 42, 790–808. [Google Scholar] [CrossRef]
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Incel, O.D.; Kose, M.; Ersoy, C. A review and taxonomy of activity recognition on mobile phones. BioNanoScience 2013, 3, 145–171. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi, S.; Mahoor, M.H.; Davidson, B.S. Development of a body joint angle measurement system using IMU sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; Volume 2011, pp. 6923–6926. [Google Scholar] [CrossRef]
- Favre, J.; Jolles, B.M.; Aissaoui, R.; Aminian, K. Ambulatory measurement of 3D knee joint angle. J. Biomech. 2008, 41, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Ángel-López, J.P.; Arzola de la Peña, N. Knee joint angle monitoring system based on inertial measurement units for human gait analysis. IFMBE Proc. 2017, 60, 520–523. [Google Scholar] [CrossRef]
- Tomaszewski, D.; Rapiński, J.; Pelc-Mieczkowska, R. Concept of AHRS algorithm designed for platform independent imu attitude alignment. Rep. Geod. Geoinf. 2017, 104, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Madgwick, O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; Volume 15. [Google Scholar] [CrossRef]
- Hamel, T.; Mahony, R. Attitude estimation on SO (3) based on direct inertial measurements. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; Volume 2006, pp. 2170–2175. [Google Scholar] [CrossRef]
- Quoc, D.D.; Sun, J.; Le, V.N.; Tan, N.N. Sensor Fusion based on Complementary Algorithms using MEMS IMU. Int. J. Signal Process. Image Process. Pattern Recognit. 2015, 8, 313–324. [Google Scholar] [CrossRef]
- Daum, F. Nonlinear filters: Beyond the kalman filter. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 57–69. [Google Scholar] [CrossRef]
- Shiao, Y.; Hoang, T.; Chang, P.-Y. Real-Time Exercise Mode Identification with an Inertial Measurement Unit for Smart Dumbbells. Appl. Sci. 2021, 11, 11521. [Google Scholar] [CrossRef]
- Nirmal, K.; Sreejith, A.; Mathew, J.; Sarpotdar, M.; Suresh, A.; Prakash, A.; Safonova, M.; Murthy, J. Noise modeling and analysis of an IMU-based attitude sensor: Improvement of performance by filtering and sensor fusion. Adv. Opt. Mech. Technol. Telesc. Instrum. 2016, 9912, 99126W. [Google Scholar] [CrossRef] [Green Version]
- Wen, Z.; Yang, G.; Cai, Q. An improved calibration method for the imu biases utilizing kf-based adagrad algorithm. Sensors 2021, 21, 5055. [Google Scholar] [CrossRef] [PubMed]
- Wagstaff, B.; Kelly, J. ‘LSTM-Based Zero-Velocity Detection for Robust Inertial Navigation. In Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, France, 24–27 September 2018. [Google Scholar]
- Skog, I.; Händel, P.; Nilsson, J.O.; Rantakokko, J. Zero-velocity detection—An algorithm evaluation. IEEE Trans. Biomed. Eng. 2010, 57, 2657–2666. [Google Scholar] [CrossRef] [PubMed]
- Sol, J. Quaternion Kinematics for the Error-State KF Definition of Quaternion; Institut de Robòtica i Informàtica Industrial: Barcelona, Spain, 2016; Volume 3, pp. 1–9. [Google Scholar]
- Filipe, N.; Kontitsis, M.; Tsiotras, P. Extended Kalman Filter for Spacecraft Pose Estimation Using Dual Quaternions. J. Guid. Control. Dyn. 2015, 38, 1625–1641. [Google Scholar] [CrossRef]
- Hartikainen, J.; Solin, A.; Särkkä, S. Optimal Filtering with Kalman Filters and Smoothers; University School of Science: Espoo, Finland, 2011. [Google Scholar]
- Gong, D.; Huang, X.; Zhang, J.; Yao, Y.; Han, Y. Efficient and Robust Feature Matching for High-Resolution Satellite Stereos. Remote Sens. 2022, 14, 5617. [Google Scholar] [CrossRef]
- Fouda, Y.; Ragab, K. An efficient implementation of normalized cross-correlation image matching based on pyramid. In Proceedings of the 2013 International Joint Conference on Awareness Science and Technology & Ubi-Media Computing (iCAST 2013 & UMEDIA 2013), Aizu-Wakamatsu, Japan, 2–4 November 2013; pp. 98–102. [Google Scholar] [CrossRef]
- Brown, M.; Szeliski, R.; Winder, S. Multi-Image Matching Using Multi-Scale Oriented Patches. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 1, pp. 510–517. [Google Scholar] [CrossRef]
Symbol | Meaning |
---|---|
Order of number of samples | |
Window size | |
The variances of the specific force rate measurements | |
The variances of the specific angular rate measurements | |
The per-channel mean of the specific force samples in W | |
The primary tuning parameter that has the largest effect on detection |
Symbol | Meaning |
---|---|
The orbit of the upper arm from two joints | |
, | The orbit of the arm from two joints |
x1, x2, y1, y2 | IMU position coordinates for positions 1 or 2 on the plane X-Y |
d | The line in the plan X-Y with the relevant parameter |
IMU | The device match on hand at center point of wrist |
Yaw(α) | The angle is calculated from IMU |
The distance from shoulder to center point of elbow | |
The distance from elbow to center point of wrist |
X-Experiment | X-Simulation | Y-Experiment | Y-Simulation | |
---|---|---|---|---|
Mean | 21.87910345 | 22.147143 | −3.238344828 | −1.735030819 |
Variance | 0.12977131 | 0.0127978 | 8.155267448 | 3.064259288 |
Observations | 29 | 29 | 29 | 29 |
Pearson Correlation | −0.395746517 | 0.869627818 | ||
Hypothesized Mean Difference | 0 | 0 | ||
t Stat | −3.452200841 | −5.09467942 | ||
P(T ≤ t) two-tail | 0.001784709 | 0.00002140844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, T.; Shiao, Y. New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion. Sensors 2023, 23, 5712. https://doi.org/10.3390/s23125712
Hoang T, Shiao Y. New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion. Sensors. 2023; 23(12):5712. https://doi.org/10.3390/s23125712
Chicago/Turabian StyleHoang, Thang, and Yaojung Shiao. 2023. "New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion" Sensors 23, no. 12: 5712. https://doi.org/10.3390/s23125712
APA StyleHoang, T., & Shiao, Y. (2023). New Method for Reduced-Number IMU Estimation in Observing Human Joint Motion. Sensors, 23(12), 5712. https://doi.org/10.3390/s23125712