Habitual Physical Activity of People with or at Risk of Diabetes-Related Foot Complications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boulton, A.J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lazzarini, P.A.; McPhail, S.M.; van Netten, J.J.; Armstrong, D.G.; Pacella, R.E. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020, 43, 964–974. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Perrin, B.M.; van Netten, J.J.; aan de Stegge, W.B.; Busch-Westbroek, T.E.; Bus, S.A. Health-related quality of life and associated factors in people with diabetes at high risk of foot ulceration. J. Foot Ankle Res. 2022, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Bergin, S.; Brand, C.; Colman, P.; Campbell, D. The impact of socio-economic disadvantage on rates of hospital separations for diabetes-related foot disease in Victoria, Australia. J. Foot Ankle Res. 2011, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Perrin, B.M.; Allen, P.; Gardner, M.J.; Chappell, A.; Phillips, B.; Massey, C.; Skinner, I.; Skinner, T.C. The foot-health of people with diabetes in regional and rural Australia: Baseline results from an observational cohort study. J. Foot Ankle Res. 2019, 12, 56. [Google Scholar] [CrossRef] [Green Version]
- Colberg, S.R.; Sigal, R.J.; Yardley, J.E.; Riddell, M.C.; Dunstan, D.W.; Dempsey, P.C.; Horton, E.S.; Castorino, K.; Tate, D.F. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016, 39, 2065–2079. [Google Scholar] [CrossRef] [Green Version]
- Sigal, R.J.; Kenny, G.P.; Wasserman, D.H.; Castaneda-Sceppa, C.; White, R.D. Physical Activity/Exercise and Type 2 Diabetes: A consensus statement from the American Diabetes Association. Diabetes Care 2006, 29, 1433–1438. [Google Scholar] [CrossRef] [Green Version]
- Streckmann, F.; Balke, M.; Cavaletti, G.; Toscanelli, A.; Bloch, W.; Décard, B.F.; Lehmann, H.C.; Faude, O. Exercise and neuropathy: Systematic review with meta-analysis. Sports Med. 2022, 52, 1043–1065. [Google Scholar] [CrossRef]
- Kluding, P.M.; Pasnoor, M.; Singh, R.; D’Silva, L.J.; Yoo, M.; Billinger, S.A.; LeMaster, J.W.; Dimachkie, M.M.; Herbelin, L.; Wright, D.E. Safety of aerobic exercise in people with diabetic peripheral neuropathy: Single-group clinical trial. Phys. Ther. 2015, 95, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Perrin, B.M.; Southon, J.; McCaig, J.; Skinner, I.; Skinner, T.C.; Kingsley, M.I.C. The effect of structured exercise compared with education on neuropathic signs and symptoms in people at risk of neuropathic diabetic foot ulcers: A randomized clinical trial. Medicina 2022, 58, 59. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Lavery, L.A.; Holtz-Neiderer, K.; Mohler, M.J.; Wendel, C.S.; Nixon, B.P.; Boulton, A.J.M. Variability in activity may precede diabetic foot ulceration. Diabetes Care 2004, 27, 1980–1984. [Google Scholar] [CrossRef] [Green Version]
- Lemaster, J.W.; Reiber, G.E.; Smith, D.G.; Heagerty, P.J.; Wallace, C. Daily weight-bearing activity does not increase the risk of diabetic foot ulcers. Med. Sci. Sports Exerc. 2003, 35, 1093–1099. [Google Scholar] [CrossRef]
- Sheahan, H.; Canning, K.; Refausse, N.; Kinnear, E.M.; Jorgensen, G.; Walsh, J.R.; Lazzarini, P.A. Differences in the daily activity of patients with diabetic foot ulcers compared to controls in their free-living environments. Int. Wound J. 2017, 14, 1175–1182. [Google Scholar] [CrossRef]
- van Netten, J.J.; Fijen, V.M.; Bus, S.A. Weight-bearing physical activity in people with diabetes-related foot disease: A systematic review. Diabetes Metab. Res. Rev. 2022, 38, e3552. [Google Scholar] [CrossRef]
- Choi, L.; Ward, S.C.; Schnelle, J.F.; Buchowski, M.S. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med. Sci. Sports Exerc. 2012, 44, 2009. [Google Scholar] [CrossRef] [Green Version]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sports Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Kingsley, M.I.C.; Nawaratne, R.; O’Halloran, P.D.; Montoye, A.H.K.; Alahakoon, D.; De Silva, D.; Staley, K.; Nicholson, M. Wrist-specific accelerometry methods for estimating free-living physical activity. J. Sci. Med. Sport 2019, 22, 677–683. [Google Scholar] [CrossRef]
- Nawaratne, R.; Alahakoon, D.; De Silva, D.; O’Halloran, P.D.; Montoye, A.H.; Staley, K.; Nicholson, M.; Kingsley, M.I. Deep learning to predict energy expenditure and activity intensity in free living conditions using wrist-specific accelerometry. J. Sports Sci. 2021, 39, 683–690. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Dawkins, N.P.; Maylor, B.; Edwardson, C.L.; Fairclough, S.J.; Davies, M.J.; Harrington, D.M.; Khunti, K.; Yates, T. Enhancing the value of accelerometer-assessed physical activity: Meaningful visual comparisons of data-driven translational accelerometer metrics. Sports Med. Open 2019, 5, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowlands, A.V.; Sherar, L.B.; Fairclough, S.J.; Yates, T.; Edwardson, C.L.; Harrington, D.M.; Davies, M.J.; Munir, F.; Khunti, K.; Stiles, V.H. A data-driven, meaningful, easy to interpret, standardised accelerometer outcome variable for global surveillance. J. Sci. Med. Sport 2019, 22, 1132–1138. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.; Rowlands, A.V.; Baldry, E.; Brady, E.M.; Davies, M.J.; Edwardson, C.L.; Yates, T.; Hall, A.P. Physical behaviors and chronotype in people with type 2 diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001375. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, M.; Van Hees, V.T.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef]
- van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; da Silva, I.C.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. (1985) 2014, 117, 738–744. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, A.V.; Mirkes, E.M.; Yates, T.; Clemes, S.; Davies, M.; Khunti, K.; Edwardson, C.L. Accelerometer-assessed physical activity in epidemiology: Are monitors equivalent? Med. Sci. Sports Exerc. 2018, 50, 257–265. [Google Scholar] [CrossRef] [Green Version]
- van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. The Compendium of Physical Activities Tracking Guide. Available online: https://sites.google.com/site/compendiumofphysicalactivities/ (accessed on 18 June 2023).
- Australian Bureau of Statistics. National Health Survey: First Results 2017–2018. Available online: https://www.abs.gov.au/statistics/health/health-conditions-and-risks/national-health-survey-first-results/latest-release#health-risk-factors (accessed on 18 June 2023).
- Chuter, V.; Quigley, F.; Tosenovsky, P.; Ritter, J.C.; Charles, J.; Cheney, J.; Fitridge, R.; Twigg, S.; Lazzarini, P.; Raspovic, A.; et al. Australian guideline on diagnosis and management of peripheral artery disease: Part of the 2021 Australian evidence-based guidelines for diabetes-related foot disease. J. Foot Ankle Res. 2022, 15, 51. [Google Scholar] [CrossRef]
- Orlando, G.; Reeves, N.D.; Boulton, A.J.M.; Ireland, A.; Federici, G.; Federici, A.; Haxhi, J.; Pugliese, G.; Balducci, S. Sedentary behaviour is an independent predictor of diabetic foot ulcer development: An 8-year prospective study. Diabetes Res. Clin. Pract. 2021, 177, 108877. [Google Scholar] [CrossRef]
- Dempsey, P.C.; Owen, N.; Biddle, S.J.; Dunstan, D.W. Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease. Curr. Diabetes Rep. 2014, 14, 522. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; Colley, R.C.; Saunders, T.J.; Healy, G.N.; Owen, N. Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Metab. 2010, 35, 725–740. [Google Scholar] [CrossRef]
- Matos, M.; Mendes, R.; Silva, A.B.; Sousa, N. Physical activity and exercise on diabetic foot related outcomes: A systematic review. Diabetes Res. Clin. Pract. 2018, 139, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Mielke, G.I.; Burton, N.W.; Brown, W.J. Accelerometer-measured physical activity in mid-age Australian adults. BMC Public Health 2022, 22, 1952. [Google Scholar] [CrossRef]
- Castrillon, C.I.M.; Beckenkamp, P.R.; Ferreira, M.L.; Michell, J.A.; de Aguiar Mendes, V.A.; Luscombe, G.M.; Stamatakis, E.; Ferreira, P.H. Are people in the bush really physically active? A systematic review and meta-analysis of physical activity and sedentary behaviour in rural Australians populations. J. Glob. Health 2020, 10, 010410. [Google Scholar] [CrossRef]
- King, A.C.; King, D.K. Physical Activity for an Aging Population. Public Health Rev. 2010, 32, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, R.E.; de Bruijn, G.J. How big is the physical activity intention-behaviour gap? A meta-analysis using the action control framework. Br. J. Health Psychol. 2013, 18, 296–309. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, M.R.; Golledge, J.; Lasschuit, J.W.J.; Heinz-Schott, K.; Charles, J.; Cheney, J.; Raspovic, A. Australian Guideline on Prevention of Foot Ulceration: Part of the 2021 Australian Evidence-Based Guidelines for Diabetes-Related foot Disease; Version 1.0; Diabetes Feet Australia, Australian Diabetes Society: Brisbane, Australia, 2021. [Google Scholar]
- Kluding, P.M.; Bareiss, S.K.; Hastings, M.; Marcus, R.L.; Sinacore, D.R.; Mueller, M.J. Physical training and activity in people with diabetic peripheral neuropathy: Paradigm shift. Phys. Ther. 2017, 97, 31–43. [Google Scholar] [CrossRef] [Green Version]
- LeMaster, J.W.; Mueller, M.J.; Reiber, G.E.; Mehr, D.R.; Madsen, R.W.; Conn, V.S. Effect of weight-bearing activity on foot ulcer incidence in people with diabetic peripheral neuropathy: Feet first randomized controlled trial. Phys. Ther. 2008, 88, 1385–1398. [Google Scholar] [CrossRef] [Green Version]
- Gethin, G.; van Netten, J.J.; Probst, S.; Touriany, E.; Sobotka, S. The Impact of Patient Health and Lifestyle Factors on Wound Healing, Part 2: Physical Activity and Nutrition; European Wound Management Association: Frederksberg, Denmark, 2022. [Google Scholar]
- Department of Health and Aged Care. Group Allied Health Services for People with Type 2 Diabetes. Available online: http://www9.health.gov.au/mbs/fullDisplay.cfm?type=item&q=81115 (accessed on 19 June 2023).
- Lee, M.; van Netten, J.J.; Sheahan, H.; Lazzarini, P.A. Moderate-to-vigorous-intensity physical activity observed in people with diabetes-related foot ulcers over a one-week period. J. Diabetes Sci. Technol. 2019, 13, 827–835. [Google Scholar] [CrossRef]
- Wijndaele, K.; Westgate, K.; Stephens, S.K.; Blair, S.N.; Bull, F.C.; Chastin, S.F.; Dunstan, D.W.; Ekelund, U.; Esliger, D.W.; Freedson, P.S. Utilization and harmonization of adult accelerometry data: Review and expert consensus. Med. Sci. Sports Exerc. 2015, 47, 2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawkins, N.P.; Yates, T.; Edwardson, C.L.; Maylor, B.; Davies, M.J.; Dunstan, D.; Highton, P.J.; Herring, L.Y.; Khunti, K.; Rowlands, A.V. Comparing 24 h physical activity profiles: Office workers, women with a history of gestational diabetes and people with chronic disease condition(s). J. Sports Sci. 2021, 39, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health: J. Natl. Sleep Found. 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Hillman, D.R.; Lack, L.C. Public health implications of sleep loss: The community burden. Med. J. Aust. 2013, 199, S7–S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.H.; Ng, K.Y.; Chin, W.K. The impact of sleep amount and sleep quality on glycemic control in type 2 diabetes: A systematic review and meta-analysis. Sleep Med. Rev. 2017, 31, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Taheri, S.; Lin, L.; Austin, D.; Young, T.; Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004, 1, e62. [Google Scholar] [CrossRef]
- Li, J.; Yin, J.; Luo, Y.; Ma, T.; He, L.; Xie, H.; Li, J.; Zhang, G.; Cheng, X.; Bai, Y. Association of healthy sleep pattern with the risk of cardiovascular disease and all-cause mortality among people with diabetes: A prospective cohort study. Diabetes Res. Clin. Pract. 2022, 186, 109822. [Google Scholar] [CrossRef]
- Diabetes Australia. Sleep and Diabetes. Available online: https://www.diabetesaustralia.com.au/blog/sleep-and-diabetes/ (accessed on 7 March 2023).
- Fernández-Torres, R.; Ruiz-Muñoz, M.; Pérez-Belloso, A.J.; García-Romero, J.; Gónzalez-Sánchez, M. Is there an association between sleep disorders and diabetic foot? A Scoping Review. J. Clin. Med. 2021, 10, 2530. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Mohler, J.; Armstrong, D.G.; Talal, T.K.; Najafi, B. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control. PLoS ONE 2015, 10, e0135255. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, E.M.; Perrin, B.M.; Hyett, N.; Kingsley, M.I.C. Factors influencing behavioural intention to use a smart shoe insole in regionally based adults with diabetes: A mixed methods study. J. Foot Ankle Res. 2019, 12, 29. [Google Scholar] [CrossRef]
- Lopes, V.P.; Magalhães, P.; Bragada, J.; Vasques, C. Actigraph calibration in obese/overweight and type 2 diabetes mellitus middle-aged to old adult patients. J. Phys. Act. Health 2009, 6, S133–S140. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Total (n = 22) | History of Ulcer (n = 11) | No History of Ulcer (n = 11) | p-Value |
---|---|---|---|---|
Diabetes type | 0.534 | |||
Type 1 | 3 (13.6%) | 2 (18.2%) | 1 (9.1%) | |
Type 2 | 19 (86.4%) | 9 (81.8%) | 10 (90.9%) | |
Male sex | 12 (54.5%) | 7 (63.6%) | 5 (45.4%) | 0.669 |
Age (years) | 65 ± 10 | 61 ± 7 | 69 ± 11 | 0.076 |
Body mass index | 33.0 ± 7.0 | 34.9 ± 8.2 | 30.7 ± 6.0 | 0.186 |
Diabetes duration (years) | 18 ± 10 | 20 ± 9 | 15 ± 11 | 0.348 |
Previous amputation | 3 (13.6%) | 3 (27.3%) | 0 (0.0%) | 0.062 |
Presence of peripheral neuropathy | 15 (68.2%) | 11 (100%) | 4 (36.4%) | 0.001 |
Foot deformity | 11 (50.0%) | 7 (63.6%) | 4 (36.4%) | 0.394 |
Method of diabetes control | 0.873 | |||
Insulin | 12 (57.1%) | 6 (54.5%) | 6 (54.5%) | |
Oral hypoglycaemics | 7 (33.3%) | 2 (18.2%) | 5 (45.5%) | |
Combination | 2 (9.5%) | 2 (18.2%) | 0 (0.0%) |
Daily Activity Outcomes | Total (n = 22) | History of Ulcer (n = 11) | No History of Ulcer (n = 11) | p-Value |
---|---|---|---|---|
METs | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.4 ± 0.7 | 0.246 |
Energy expenditure (kJ) ^ | 14,262 (1164–18,797) | 16,787 (11,465–20,707) | 13,189 (11,700–14,539) | 0.101 |
Sedentary behaviour (minutes) | 689 ± 114 | 676 ± 105 | 702 ± 125 | 0.664 |
LPA (minutes) | 280 ± 78 | 286 ± 82 | 274 ± 77 | 0.816 |
MVPA (minutes) ^ | 9.7 (1.6–15.7) | 10.8 (1.6–15.8) | 4.6 (1.1–15.7) | 0.478 |
Sleep duration (hours) | 5.6 ± 1.7 | 5.3 ± 1.5 | 6.0 ± 1.9 | 0.149 |
Sleep efficiency (%) * | 92.7 ± 3.8 | 92.1 ± 4.7 | 93.3 ± 2.7 | 0.471 |
Accelerometer non-wear time (minutes) ^ | 96 (44–198) | 105 (5–223) | 74 (17–172) | 0.236 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrin, B.M.; Diacogiorgis, D.; Sullivan, C.; Gerrard, J.; Skinner, I.; Skinner, T.C.; Nawaratne, R.; Alahakoon, D.; Kingsley, M.I.C. Habitual Physical Activity of People with or at Risk of Diabetes-Related Foot Complications. Sensors 2023, 23, 5822. https://doi.org/10.3390/s23135822
Perrin BM, Diacogiorgis D, Sullivan C, Gerrard J, Skinner I, Skinner TC, Nawaratne R, Alahakoon D, Kingsley MIC. Habitual Physical Activity of People with or at Risk of Diabetes-Related Foot Complications. Sensors. 2023; 23(13):5822. https://doi.org/10.3390/s23135822
Chicago/Turabian StylePerrin, Byron M., Dimitri Diacogiorgis, Courtney Sullivan, James Gerrard, Isabelle Skinner, Timothy C. Skinner, Rashmika Nawaratne, Damminda Alahakoon, and Michael I. C. Kingsley. 2023. "Habitual Physical Activity of People with or at Risk of Diabetes-Related Foot Complications" Sensors 23, no. 13: 5822. https://doi.org/10.3390/s23135822
APA StylePerrin, B. M., Diacogiorgis, D., Sullivan, C., Gerrard, J., Skinner, I., Skinner, T. C., Nawaratne, R., Alahakoon, D., & Kingsley, M. I. C. (2023). Habitual Physical Activity of People with or at Risk of Diabetes-Related Foot Complications. Sensors, 23(13), 5822. https://doi.org/10.3390/s23135822