Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. trans-2-Nonenal Biosensor Using NAD(P)H-Dependent Enzymes
2.3. Evaluation of ALDH or ER1 Biosensors on Trans-2-Nonenal Solution
2.4. Measurement of trans-2-Nonenal Vapor
2.5. Measurement of Human Samples
3. Results and Discussion
3.1. Responses of ALDH and ER Biosensors
3.2. Selectivity of ALDH and ER Biosensors
3.3. Quantitative Characteristics of ALDH Bio-Sniffer against trans-2-Nonenal
3.4. Signal of Headspace Gases Acquired from Skin-Wiped Cotton at Different Body Sites
3.5. Difference of Signal between Participants in Their 20s and 50s
3.6. Limitations and Advantages of the Developed Sensors
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Khalid, T.; Osborne, D.; Ratcliffe, N.M. A Review of the Volatiles from the Healthy Human Body. J. Breath Res. 2014, 8, 014001. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, A.; Hrinczenko, B.; Swain, G.M.; Peteu, S.F. Exhaled Breath Biomarker Sensing. Biosens. Bioelectron. 2021, 182, 113193. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between Nanomaterials and Volatile Organic Compounds for Non-Invasive Medical Evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef] [PubMed]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Body Malodours and Their Topical Treatment Agents: Body Malodours and Treatment Agents. Int. J. Cosmet. Sci. 2011, 33, 298–311. [Google Scholar] [CrossRef]
- Penn, D.J.; Oberzaucher, E.; Grammer, K.; Fischer, G.; Soini, H.A.; Wiesler, D.; Novotny, M.V.; Dixon, S.J.; Xu, Y.; Brereton, R.G. Individual and Gender Fingerprints in Human Body Odour. J. R. Soc. Interface 2007, 4, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Kim, K.-H. Human Body-Odor Components and Their Determination. TrAC Trends Anal. Chem. 2011, 30, 784–796. [Google Scholar] [CrossRef]
- Gallagher, M.; Wysocki, C.J.; Leyden, J.J.; Spielman, A.I.; Sun, X.; Preti, G. Analyses of Volatile Organic Compounds from Human Skin. Br. J. Dermatol. 2008, 159, 780–791. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, S.; Hoshino, K.; Kusuhara, M. Odor Associated with Aging. Anti-Aging Med. 2010, 7, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Haze, S.; Gozu, Y.; Nakamura, S.; Kohno, Y.; Sawano, K.; Ohta, H.; Yamazaki, K. 2-Nonenal Newly Found in Human Body Odor Tends to Increase with Aging. J. Investig. Dermatol. 2001, 116, 520–524. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015; ISBN 978-0-19-871747-8. [Google Scholar]
- Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, Oxidants, and Aging. Cell 2005, 120, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Finkel, T.; Holbrook, N.J. Oxidants, Oxidative Stress and the Biology of Ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Praticò, D. Lipid Peroxidation and the Aging Process. Sci. Aging Knowl. Environ. 2002, 50, re5. [Google Scholar] [CrossRef] [PubMed]
- Nazzaro-Porro, M.; Passi, S.; Boniforti, L.; Belsito, F. Effects of Aging on Fatty Acids in Skin Surface Lipids. J. Investig. Dermatol. 1979, 73, 112–117. [Google Scholar] [CrossRef]
- Hara, K.; Mikuni, K.; Hara, K.; Hashimoto, H. Effects of Cyclodextrins on Deodoration of “Aging Odor”. J. Incl. Phenom. 2002, 44, 241–246. [Google Scholar] [CrossRef]
- Ham, J.-S.; Kim, H.-Y.; Lim, S.-T. Antioxidant and Deodorizing Activities of Phenolic Components in Chestnut Inner Shell Extracts. Ind. Crops Prod. 2015, 73, 99–105. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.H.; Nguyen, N.-T.; Park, R.-M.; Lee, S.-M.; Bang, S.H.; Jeon, G.; Lee, J.; Kim, S.; Cho, B.-K.; et al. Removal of Trans-2-Nonenal Using Hen Egg White Lysosomal-Related Enzymes. Mol. Biotechnol. 2020, 62, 380–386. [Google Scholar] [CrossRef]
- Dalton, P. Psychophysical and Behavioral Characteristics of Olfactory Adaptation. Chem. Senses 2000, 25, 487–492. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, L.C.; Strating, J.; Tjaden, U.R. Analysis of E-2-Nonenal in Beer at the Ultra Trace Level by High-Performance Liquid Chromatography Using Precolumn Derivatization and Column Switching Techniques. J. Chromatogr. A 1987, 393, 85–96. [Google Scholar] [CrossRef]
- Guido, L.F.; Carneiro, J.R.; Santos, J.R.; Almeida, P.J.; Rodrigues, J.A.; Barros, A.A. Simultaneous Determination of E-2-Nonenal and β-Damascenone in Beer by Reversed-Phase Liquid Chromatography with UV Detection. J. Chromatogr. A 2004, 1032, 17–22. [Google Scholar] [CrossRef]
- Svoboda, Z.; Mikulíková, R.; Běláková, S.; Benešová, K.; Márová, I.; Nesvadba, Z. Optimization of Modern Analytical SPME and SPDE Methods for Determination of Trans-2-Nonenal in Barley, Malt and Beer. Chromatographia 2011, 73, 157–161. [Google Scholar] [CrossRef]
- Palma-Harris, C.; McFeeters, R.F.; Fleming, H.P. Solid-Phase Microextraction (SPME) Technique for Measurement of Generation of Fresh Cucumber Flavor Compounds. J. Agric. Food Chem. 2001, 49, 4203–4207. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.S.; Proctor, A. Milled Rice Oxidation Volatiles and Odor Development. J. Food Sci. 2003, 68, 2676–2681. [Google Scholar] [CrossRef]
- Yazawa, M.; Takahashi, K.; Uchida, H.; Hasegawa, Y. Development of LB Film Taste Sensor for Beer Degradation Evaluation and Its Physical Properties. Electron. Comm. Jpn. 2019, 102, 47–54. [Google Scholar] [CrossRef]
- Kimura, K.; Sekine, Y.; Furukawa, S.; Takahashi, M.; Oikawa, D. Measurement of 2-Nonenal and Diacetyl Emanating from Human Skin Surface Employing Passive Flux Sampler—GCMS System. J. Chromatogr. B 2016, 1028, 181–185. [Google Scholar] [CrossRef]
- Saito, K.; Tokorodani, Y.; Sakamoto, C.; Kataoka, H. Headspace Solid-Phase Microextraction/Gas Chromatography–Mass Spectrometry for the Determination of 2-Nonenal and Its Application to Body Odor Analysis. Molecules 2021, 26, 5739. [Google Scholar] [CrossRef] [PubMed]
- Mussinan, C.J.; Morello, M.J. (Eds.) Flavor Analysis: Developments in Isolation and Characterization; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1998; Volume 705, ISBN 978-0-8412-3578-6. [Google Scholar]
- Kohl, D.; Heinert, L.; Bock, J.; Hofmann, T.; Schieberle, P. Gas Sensors for Food Aroma during Baking and Roasting Processes Based on Selective Odorant Measurements by an Array. Thin Solid Film. 2001, 391, 303–307. [Google Scholar] [CrossRef]
- Itoh, T.; Koyama, Y.; Shin, W.; Akamatsu, T.; Tsuruta, A.; Masuda, Y.; Uchiyama, K. Selective Detection of Target Volatile Organic Compounds in Contaminated Air Using Sensor Array with Machine Learning: Aging Notes and Mold Smells in Simulated Automobile Interior Contaminant Gases. Sensors 2020, 20, 2687. [Google Scholar] [CrossRef]
- Liu, C.; Maeshima, K.; Ge, L.; Hayashi, K. A Flexible and Printable Chemiresistor Sensor Array for Detection and Recognition of Aging-Associated Human Body Odor. Meet. Abstr. 2020, MA2020-01, 2011. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Hurot, C.; Weerakkody, J.S.; Mathey, R.; Buhot, A.; Mascini, M.; Hou, Y.; Compagnone, D. Development of an Optoelectronic Nose Based on Surface Plasmon Resonance Imaging with Peptide and Hairpin DNA for Sensing Volatile Organic Compounds. Sens. Actuators B Chem. 2020, 303, 127188. [Google Scholar] [CrossRef]
- Endo, T.; Ryuuno, Y.; Yanagida, Y.; Hatsuzawa, T. Development of Plasmonic Chemical Sensor for Detection of Aldehyde Compounds. IEEJ Trans. SM 2013, 133, 372–373. [Google Scholar] [CrossRef]
- Yamamoto, H.; Kimoto, N. Novel Enone Reductases, Methods for Producing Same, and Methods for Selectively Reducing a Carbon-Carbon Double Bond of an Alpha, Beta-Unsaturated Ketone Using the Reductases. US 20040253695A1, 29 June 2004. [Google Scholar]
- Ishihara, K.; Tanaka, S.; Furukawa, N.; Nakabayashi, N.; Kurita, K. Improved Blood Compatibility of Segmented Polyurethanes by Polymeric Additives Having Phospholipid Polar Groups. I. Molecular Design of Polymeric Additives and Their Functions. J. Biomed. Mater. Res. 1996, 32, 391–399. [Google Scholar] [CrossRef]
- Chu, M.; Kudo, H.; Shirai, T.; Miyajima, K.; Saito, H.; Morimoto, N.; Yano, K.; Iwasaki, Y.; Akiyoshi, K.; Mitsubayashi, K. A Soft and Flexible Biosensor Using a Phospholipid Polymer for Continuous Glucose Monitoring. Biomed. Microdevices 2009, 11, 837–842. [Google Scholar] [CrossRef]
- Stiti, N.; Podgórska, K.; Bartels, D. Aldehyde Dehydrogenase Enzyme ALDH3H1 from Arabidopsis Thaliana: Identification of Amino Acid Residues Critical for Cofactor Specificity. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2014, 1844, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ren, J.; Wu, Q.; Zhu, D. Biochemical Characterization and Substrate Profiling of a New NADH-Dependent Enoate Reductase from Lactobacillus Casei. Enzym. Microb. Technol. 2012, 51, 26–34. [Google Scholar] [CrossRef]
- Toma, K.; Iwasaki, K.; Zhang, G.; Iitani, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Biochemical Methanol Gas Sensor (MeOH Bio-Sniffer) for Non-Invasive Assessment of Intestinal Flora from Breath Methanol. Sensors 2021, 21, 4897. [Google Scholar] [CrossRef] [PubMed]
- Iitani, K.; Chien, P.-J.; Suzuki, T.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Improved Sensitivity of Acetaldehyde Biosensor by Detecting ADH Reverse Reaction-Mediated NADH Fluoro-Quenching for Wine Evaluation. ACS Sens. 2017, 2, 940–946. [Google Scholar] [CrossRef]
- Iitani, K.; Chien, P.-J.; Suzuki, T.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Fiber-Optic Bio-Sniffer (Biochemical Gas Sensor) Using Reverse Reaction of Alcohol Dehydrogenase for Exhaled Acetaldehyde. ACS Sens. 2018, 3, 425–431. [Google Scholar] [CrossRef]
- Buck, M. Trifluoroethanol and Colleagues: Cosolvents Come of Age. Recent Studies with Peptides and Proteins. Quart. Rev. Biophys. 1998, 31, 297–355. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Andreadis, M.; Moschakis, T. Effect of Heat, PH, Ultrasonication and Ethanol on the Denaturation of Whey Protein Isolate Using a Newly Developed Approach in the Analysis of Difference-UV Spectra. Food Chem. 2017, 232, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Shiraki, K.; Nishikawa, K.; Goto, Y. Trifluoroethanol-Induced Stabilization of the a-Helical Structure of b-Lactoglobulin: Implication for Non-Hierarchical Protein Folding. J. Mol. Biol. 1995, 245, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N.; Narizhneva, N.V.; Kirschstein, S.O.; Winter, S.; Löber, G. Conformational Transitions Provoked by Organic Solvents in β-Lactoglobulin: Can a Molten Globule like Intermediate Be Induced by the Decrease in Dielectric Constant? Fold. Des. 1997, 1997, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mochalski, P.; King, J.; Unterkofler, K.; Hinterhuber, H.; Amann, A. Emission Rates of Selected Volatile Organic Compounds from Skin of Healthy Volunteers. J. Chromatogr. B 2014, 959, 62–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakawa, T.; Suzuki, T.; Tsujii, M.; Iitani, K.; Chien, P.-J.; Ye, M.; Toma, K.; Iwasaki, Y.; Mitsubayashi, K. Real-Time Monitoring of Skin Ethanol Gas by a High-Sensitivity Gas Phase Biosensor (Bio-Sniffer) for the Non-Invasive Evaluation of Volatile Blood Compounds. Biosens. Bioelectron. 2019, 129, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Molinara, M.; Cancelliere, R.; Di Tinno, A.; Ferrigno, L.; Shuba, M.; Kuzhir, P.; Maffucci, A.; Micheli, L. A Deep Learning Approach to Organic Pollutants Classification Using Voltammetry. Sensors 2022, 22, 8032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iitani, K.; Mori, H.; Ichikawa, K.; Toma, K.; Arakawa, T.; Iwasaki, Y.; Mitsubayashi, K. Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor. Sensors 2023, 23, 5857. https://doi.org/10.3390/s23135857
Iitani K, Mori H, Ichikawa K, Toma K, Arakawa T, Iwasaki Y, Mitsubayashi K. Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor. Sensors. 2023; 23(13):5857. https://doi.org/10.3390/s23135857
Chicago/Turabian StyleIitani, Kenta, Hidehisa Mori, Kenta Ichikawa, Koji Toma, Takahiro Arakawa, Yasuhiko Iwasaki, and Kohji Mitsubayashi. 2023. "Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor" Sensors 23, no. 13: 5857. https://doi.org/10.3390/s23135857
APA StyleIitani, K., Mori, H., Ichikawa, K., Toma, K., Arakawa, T., Iwasaki, Y., & Mitsubayashi, K. (2023). Gas-Phase Biosensors (Bio-Sniffers) for Measurement of 2-Nonenal, the Causative Volatile Molecule of Human Aging-Related Body Odor. Sensors, 23(13), 5857. https://doi.org/10.3390/s23135857