Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.2. Sensor Fabrication
2.2.1. Polymerization of Polyaniline (PANI)
2.2.2. Atomic Gold Deposition
2.3. Measurement System
3. Results
3.1. Measurement System Performances
3.2. Sensor Response from Modified IDA Electrode
3.2.1. Comparison of Pt/PANI/Au2 and Pt/PANI/Au0
3.2.2. Concentration Dependency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gas Sensor Market Size & Share Report, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 20 February 2023).
- Gardner, E.L.W.; Gardner, J.W.; Udrea, F. Micromachined Thermal Gas Sensors—A Review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef] [PubMed]
- Gas Sensor Market, Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2030. Available online: https://www.precedenceresearch.com/gas-sensor-market (accessed on 20 February 2023).
- Gas Sensor Market by Gas Type, Technology, Output Type, Product Type, Application and Region-Global Forecast to 2027. Available online: https://www.marketsandmarkets.com/Market-Reports/gas-sensor-market-245141093.html (accessed on 20 February 2023).
- Tang, Y.; He, J.; Gao, X.; Yang, T.; Zeng, X. Continuous Amperometric Hydrogen Gas Sensing in Ionic Liquids. Analyst 2018, 143, 4136–4146. [Google Scholar] [CrossRef]
- Stetter, J.R.; Li, J. Amperometric Gas Sensors—A Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef] [PubMed]
- Gondosiswanto, R.; Hibbert, D.B.; Fang, Y.; Zhao, C. Redox Recycling Amplification Using an Interdigitated Microelectrode Array for Ionic Liquid-Based Oxygen Sensors. Anal. Chem. 2018, 90, 3950–3957. [Google Scholar] [CrossRef]
- Paul, A.; Muthukumar, S.; Prasad, S. Review—Room-Temperature Ionic Liquids for Electrochemical Application with Special Focus on Gas Sensors. J. Electrochem. Soc. 2020, 167, 037511. [Google Scholar] [CrossRef]
- Gunawan, C.A.; Ge, M.; Zhao, C. Robust and Versatile Ionic Liquid Microarrays Achieved by Microcontact Printing. Nat. Commun. 2014, 5, 3744. [Google Scholar] [CrossRef] [PubMed]
- Giaccherini, A.; Al Khatib, M.; Cinotti, S.; Piciollo, E.; Berretti, E.; Giusti, P.; Innocenti, M.; Montegrossi, G.; Lavacchi, A. Analysis of Mass Transport in Ionic Liquids: A Rotating Disk Electrode Approach. Sci. Rep. 2020, 10, 13433. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Mu, T. A Review on the Transport Properties of Ionic Liquids. J. Mol. Liq. 2014, 193, 262–266. [Google Scholar] [CrossRef]
- Imae, T.; Rahmawati, A.; Berhe, A.M.; Kebede, M.A. Au Quantum Clusters and Plasmonic Quantum Nanoparticles Synthesized under Femtosecond-Pulse Laser Irradiation in Aqueous Solution and in ZIF-8 for Catalytic Reduction of 4-Nitrophenol. ACS Appl. Nano Mater. 2022, 5, 16842–16852. [Google Scholar] [CrossRef]
- Tsukuda, T. Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bull. Chem. Soc. Jpn. 2012, 85, 151–168. [Google Scholar] [CrossRef]
- Keller, D.; Henninen, T.R.; Erni, R. Atomic Mechanisms of Gold Nanoparticle Growth in Ionic Liquids Studied by: In Situ Scanning Transmission Electron Microscopy. Nanoscale 2020, 12, 22511–22517. [Google Scholar] [CrossRef]
- Jonke, A.P.; Josowicz, M.; Janata, J. Odd-Even Pattern Observed in Polyaniline/(Au0–Au8) Composites. J. Electrochem. Soc. 2012, 159, P40–P43. [Google Scholar] [CrossRef]
- Janata, J.; Nakamoto, T. Vision of New Olfactory Sensing Array. IEEJ Trans. Electr. Electron. Eng. 2016, 11, 261–267. [Google Scholar] [CrossRef]
- Fernández, E.M.; Soler, J.M.; Garzón, I.L.; Balbás, L.C. Trends in the Structure and Bonding of Noble Metal Clusters. Phys. Rev. B 2004, 70, 165403. [Google Scholar] [CrossRef]
- Majumder, C.; Kulshreshtha, S.K. Structural and Electronic Properties of Aun (N = 2–10) Clusters and Their Interactions with Single S Atoms: Ab Initio Molecular Dynamics Simulations. Phys. Rev. B 2006, 73, 155427. [Google Scholar] [CrossRef]
- Schwartz, I.T.; Jonke, A.P.; Josowicz, M.; Janata, J. Effect of Structured Atomic Gold on Electrooxidation of Alcohols in Alkaline Medium. Catal. Lett. 2013, 143, 777–782. [Google Scholar] [CrossRef]
- Ito, Y.; Chang, T.-F.M.; Chien, Y.-A.; Chen, C.-Y.; Chakraborty, P.; Nakamoto, T.; Sone, M. Catalytic Activity of Atomic Gold-Decorated Polyaniline Support in Glucose Oxidation. Electrochem 2020, 1, 394–399. [Google Scholar] [CrossRef]
- Saheb, A.H. Sensing Materials Based on Ionic Liquids. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 30 June 2008. [Google Scholar]
- Lange, U.; Mirsky, V.M. Integrated Electrochemical Transistor as a Fast Recoverable Gas Sensor. Anal. Chim. Acta 2011, 687, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Efremenko, Y.; Mirsky, V.M. Virtual Sensor Array Consisting of a Single Sensor Element with Variable Affinity: An Application for Analysis of Fish Freshness. Sens. Actuators B Chem. 2017, 241, 652–657. [Google Scholar] [CrossRef]
- Saheb, A.; Smith, J.A.; Josowicz, M.; Janata, J.; Baer, D.R.; Engelhard, M.H. Controlling Size of Gold Clusters in Polyaniline from Top-down and from Bottom-Up. J. Electroanal. Chem. 2008, 621, 238–244. [Google Scholar] [CrossRef]
- Efremenko, Y.; Mirsky, V.M. Electrically Controlled Variation of Receptor Affinity. Anal. Bioanal. Chem. 2016, 408, 7283–7287. [Google Scholar] [CrossRef] [PubMed]
- Jonke, A.P.; Josowicz, M.; Janata, J. Polyaniline Doped with Atomic Gold. J. Electrochem. Soc. 2011, 158, E147. [Google Scholar] [CrossRef]
- Bio-Butanol Market-Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028). Available online: https://www.mordorintelligence.com/industry-reports/bio-butanol-market (accessed on 20 February 2023).
- Biobutanol Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2022–2027. Available online: https://www.imarcgroup.com/biobutanol-market (accessed on 20 February 2023).
- Timung, S.; Singh, H.; Annu, A. Bio-Butanol as Biofuels: The Present and Future Scope. In Liquid Biofuels: Fundamentals, Characterization, and Applications; Wiley: Hoboken, NJ, USA, 2021; pp. 467–485. ISBN 9781119793038. [Google Scholar]
- Russmayer, H.; Marx, H.; Sauer, M. Microbial 2-Butanol Production with Lactobacillus Diolivorans. Biotechnol. Biofuels 2019, 12, 262. [Google Scholar] [CrossRef] [PubMed]
- Faricha, A.; Chakraborty, P.; Okamoto, K.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Microgravimetric and Amperometric Sensor Coated with Room Temperature Ionic Liquid to Enhance Butanol Isomers Gas Separation. IEEE Sens. J. 2022, 22, 24471–24478. [Google Scholar] [CrossRef]
- Chakraborty, P.; Chien, Y.A.; Chiu, W.T.; Chang, T.F.M.; Sone, M.; Nakamoto, T.; Josowicz, M.; Janata, J. Design and Development of Amperometric Gas Sensor with Atomic Au-Polyaniline/Pt Composite. IEEE Sens. J. 2020, 20, 12479–12487. [Google Scholar] [CrossRef]
- Chakraborty, P. Amperometric Gas Sensor with Atomic Gold Decorated Polyaniline-Platinum Composite. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo, Japan, August 2020. [Google Scholar]
- Chakraborty, P.; Chien, Y.A.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Indirect Sensing of Lower Aliphatic Ester Using Atomic Gold Decorated Polyaniline Electrode. Sensors 2020, 20, 3640. [Google Scholar] [CrossRef]
- Chakraborty, P.; Faricha, A.; Okamoto, K.; Kawakami, H.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. Towards Planar Atomic-Gold Decorated Polyaniline Gas Sensors for Enhanced Electrochemical Sensing. IEEE Sens. J. 2023, 23, 6481–6488. [Google Scholar] [CrossRef]
- Chakraborty, P.; Kawakami, H.; Faricha, A.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Polyaniline-Atomic Au Modified Platinum Electrode with Ionic Liquid as Configuration for Enhanced Electrochemical Sensing. In Proceedings of the IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; Volume 2021. [Google Scholar]
- Harris, K.R.; Kanakubo, M. Self-Diffusion Coefficients and Related Transport Properties for a Number of Fragile Ionic Liquids. J. Chem. Eng. Data 2016, 61, 2399–2411. [Google Scholar] [CrossRef]
- Queirós, C.S.G.P.; Paredes, X.; Avelino, T.F.S.; Bastos, D.E.N.; Ferreira, M.; Santos, F.J.V.; Santos, A.F.; Lopes, M.L.M.; Lourenço, M.J.V.; Pereira, H.; et al. The Influence of Water on the Thermophysical Properties of 1-Ethyl-3-Methylimidazolium Acetate. J. Mol. Liq. 2020, 297, 111925. [Google Scholar] [CrossRef]
- IOLITEC; Properties, C.; Properties, T. Technical Data Sheet 1-Ethyl-3-Methylimidazolium Acetate; IOLITEC: Heilbronn, Germany, 2005; Volume 123. [Google Scholar]
- Ghazvini, M.S.; Pulletikurthi, G.; Lahiri, A.; Endres, F. Electrochemical and Spectroscopic Studies of Zinc Acetate in 1-Ethyl-3-Methylimidazolium Acetate for Zinc Electrodeposition. ChemElectroChem 2016, 3, 598–604. [Google Scholar] [CrossRef]
- Information of EC Window from 1-Ethyl-3-Methylimidazolium Acetate and Density of 1-Ethyl-3-Methylimidazolium Chloride. Available online: http://www.ilra.jp/docs/BASF_IL_Brochure.pdf (accessed on 1 October 2021).
- Freire, M.G.; Teles, A.R.R.; Rocha, M.A.A.; Schröder, B.; Neves, C.M.S.S.; Carvalho, P.J.; Evtuguin, D.V.; Santos, L.M.N.B.F.; Coutinho, J.A.P. Thermophysical Characterization of Ionic Liquids Able to Dissolve Biomass. J. Chem. Eng. Data 2011, 56, 4813–4822. [Google Scholar] [CrossRef]
- 1-Ethyl-3-Methylimidazolium Trifluoromethanesulfonate. Available online: https://en.solvionic.com/products/1-ethyl-3-methylimidazolium-trifluoromethanesulfonate-99 (accessed on 1 October 2022).
- Pitawela, N.R.; Shaw, S.K. Imidazolium Triflate Ionic Liquids’ Capacitance-Potential Relationships and Transport Properties Affected by Cation Chain Lengths. ACS Meas. Sci. Au 2021, 1, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cai, Y.; Thomsen, K.; Kontogeorgis, G.M.; Woodley, J.M. A Group Contribution-Based Prediction Method for the Electrical Conductivity of Ionic Liquids. Fluid Phase Equilibria 2020, 509, 112462. [Google Scholar] [CrossRef]
- Aleixandre, M.; Nakazawa, K.; Nakamoto, T. Optimization of Modulation Methods for Solenoid Valves to Realize an Odor Generation System. Sensors 2019, 19, 4009. [Google Scholar] [CrossRef] [PubMed]
- Songkhla, S.N.; Nakamoto, T. Signal Processing of Vector Network Analyzer Measurement for Quartz Crystal Microbalance With Viscous Damping. IEEE Sens. J. 2019, 19, 10386–10392. [Google Scholar] [CrossRef]
- Chen, T.; Chidambaram, M.; Liu, Z.; Smit, B.; Bell, A.T. Viscosities of the Mixtures of 1-Ethyl-3-Methylimidazolium Chloride with Water, Acetonitrile and Glucose: A Molecular Dynamics Simulation and Experimental Study. J. Phys. Chem. B 2010, 114, 5790–5794. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Aleixandre, M.; Nakamoto, T. Study of Room Temperature Ionic Liquids as Gas Sensing Materials in Quartz Crystal Microbalances. Sensors 2020, 20, 4026. [Google Scholar] [CrossRef] [PubMed]
- Saheb, A.; Janata, J.; Josowicz, M. Reference Electrode for Ionic Liquids. Electroanalysis 2006, 18, 405–409. [Google Scholar] [CrossRef]
- Otagawa, T.; Zaromb, S.; Stetter, J.R. Electrochemical Oxidation of Methane in Nonaqueous Electrolytes at Room Temperature Application to Gas Sensors. J. Electrochem. Soc. 1985, 132, 2951–2956. [Google Scholar] [CrossRef]
- Doblinger, S.; Donati, T.J.; Silvester, D.S. Effect of Humidity and Impurities on the Electrochemical Window of Ionic Liquids and Its Implications for Electroanalysis. J. Phys. Chem. C 2020, 124, 20309–20319. [Google Scholar] [CrossRef]
- Farlane, D.; Kar, M.; Pringle, J.M. Electrochemistry of and in Ionic Liquids. In Fundamentals of Ionic Liquids: From Chemistry to Applications; Wiley-VCH: Weinheim, Germany, 2017; pp. 177–202. ISBN 9783527340033. [Google Scholar]
- Williams, C.L.; Li, C.; Hu, H.; Allen, J.C.; Thomas, B.J. Three Way Comparison of Hydrophilic Ionic Liquid, Hydrophobic Ionic Liquid, and Dilute Acid for the Pretreatment of Herbaceous and Woody Biomass. Front. Energy Res. 2018, 6, 67. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y.; Lu, X.; Zhao, C.; Yan, C.; Mu, T. Water Sorption in Protic Ionic Liquids: Correlation between Hygroscopicity and Polarity. New J. Chem. 2013, 37, 1959–1967. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Visser, A.E.; Reichert, W.M.; Willauer, H.D.; Broker, G.A.; Rogers, R.D. Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156–164. [Google Scholar] [CrossRef]
- Dillon, W.R.; Goldstein, M. Multivariate Analysis: Methods and Applications; Wiley: New York, NY, USA, 1984. [Google Scholar]
- Nakamoto, T.; Sasaki, S.; Fukuda, A.; Moriizumi, T. Selection Method of Sensing Membranes in Odor-Sensing System. Sens. Mater. 1992, 4, 111–119. [Google Scholar]
- Nakamato, T. Essentials of Machine Olfaction and Taste, 1st ed.; John Wiley & Sons: Singapore, 2016; pp. 247–314. [Google Scholar]
Label | CAS Number | Full Name | Viscosity, η (P a s) | Density, ρ (Kg/m3) | Conductivity, ĸ (S/m) | EC Window (V) |
---|---|---|---|---|---|---|
[EMIM][Ac] | 143314-17-4 | 1-Ethyl-3-methylimidazolium Acetate | 0.143 [37] | 1099.3 [37] | 0.2 [38] | −2.3 to +0.9 [39,40,41] |
[EMIM][Otf] | 145022-44-2 | 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate | 0.042 [37] | 1385.9 [37] | 0.9 [42] | 4.3 [43,44] |
[EMIM][Cl] | 65039-09-0 | 1-Ethyl-3-methylimidazolium Chloride | 0.047 (a) [41] | 1112 (a) [41] | 0.108 [45] | - |
RTIL | Solvent | Concentration (mg/mL) | Pull-Up Speed (µm/s) | ΔF (Hz) | ΔM (µg) | d (nm) |
---|---|---|---|---|---|---|
[EMIM][Ac] | Acetone [39] | 10 | 1000 | 435 | 0.46 | 17.12 |
[EMIM][Otf] | Acetone [43] | 9.09 | 1000 | 577 | 0.62 | 28.50 |
[EMIM][Cl] | Acetonitrile [48] | 9.09 | 100 | 872 | 0.93 | 33.09 |
RTIL | Analyte | Mean in Hz (Standard Deviation in Hz) | R2 | ||||
---|---|---|---|---|---|---|---|
0% RC | 25% RC | 50% RC | 75% RC | 100% RC | |||
[EMIM][Ac] | 1-butanol | 0 (0) | −4.942 (0.467) | −9.056 (0.791) | −12.7 (0.848) | −16.77 (1.532) | 0.996 |
Isobutanol | 0 (0) | −5.08 (0.396) | −9.176 (0.548) | −13.1 (0.938) | −16.44 (1.656) | 0.978 | |
2-butanol | 0 (0) | −3.322 (0.276) | −6.102 (0.246) | −8.404 (0.620) | −10.16 (0.482) | 0.971 | |
[EMIM][Otf] | 1-butanol | 0 (0) | −2.138 (0.169) | −3.994 (0.148) | −5.44 (0.240) | −6.826 (0.204) | 0.995 |
Isobutanol | 0 (0) | −2.482 (0.179) | −4.23 (0.241) | −5.782 (0.256) | −6.98 (0.258) | 0.960 | |
2-butanol | 0 (0) | −2.136 (0.276) | −3.78 (0.370) | −4.982 (0.694) | −6.22 (0.549) | 0.974 | |
[EMIM][Cl] | 1-butanol | 0 (0) | −0.86 (0.049) | −1.728 (0.096) | −2.146 (0.154) | −2.816 (0.093) | 0.994 |
Isobutanol | 0 (0) | −1.04 (0.038) | −1.844 (0.104) | −2.352 (0.156) | −3.036 (0.136) | 0.971 | |
2-butanol | 0 (0) | −0.702 (0.072) | −1.31 (0.081) | −2.032 (0.167) | −2.3922 (0.183) | 0.967 |
RTIL | Analyte | Fixed Electrochemical Potentials (Es) against Ag/AgCl Ink | |||||
---|---|---|---|---|---|---|---|
+0.25 V | +0.5 V | +0.9 V or +1 V | |||||
Au2 | Au0 | Au2 | Au0 | Au2 | Au0 | ||
[EMIM][Ac] | 1-butanol | 0.947 | 0.52 | 0.896 | 0.73 | 0.964 | 0.78 |
Isobutanol | 0.89 | 0.628 | 0.857 | 0.846 | 0.89 | 0.825 | |
2-butanol | 0.574 | 0.633 | 0.799 | 0.51 | 0.871 | 0.621 | |
[EMIM][Otf] | 1-butanol | 0.968 | 0.5 | 0.919 | 0.5 | 0.685 | 0.5 |
Isobutanol | 0.799 | 0.5 | 0.52 | 0.5 | 0.74 | 0.5 | |
2-butanol | 0.857 | 0.5 | 0.73 | 0.5 | 0.844 | 0.5 | |
[EMIM][Cl] | 1-butanol | 0.8491 | 0.7 | 0.94 | 0.94 | 0.94 | 0.94 |
Isobutanol | 0.88 | 0.9 | 0.868 | 0.8 | 0.86 | 0.8 | |
2-butanol | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Combination of Sensing Films Applied on Pt/PANI/Au2 | Wilks’ Λ | ||||||||
---|---|---|---|---|---|---|---|---|---|
[EMIM][Ac] | [EMIM][Otf] | [EMIM][Cl] | |||||||
+0.25 V | +0.5 V | +0.9 V | +0.25 V | +0.5 V | +1 V | +0.25 V | +0.5 V | +1 V | |
● | ● | ● | × | × | × | × | × | × | 2.0 × 10−1 |
× | × | × | ● | ● | ● | × | × | × | 1.28 × 10−1 |
× | × | × | × | × | × | ● | ● | ● | 4.8 × 10−3 |
● | × | × | ● | × | × | ● | × | × | 4.9 × 10−2 |
● | × | × | ● | × | × | × | ● | × | 5.8 × 10−3 |
● | × | × | ● | × | × | × | × | ● | 5.8 × 10−3 |
● | × | × | × | ● | × | ● | × | × | 3.3 × 10−2 |
● | × | × | × | ● | × | × | ● | × | 4.2 × 10−3 |
● | × | × | × | ● | × | × | × | ● | 4.26 × 10−3 |
● | × | × | × | × | ● | ● | × | × | 3.85 × 10−2 |
● | × | × | × | × | ● | × | ● | × | 4.8 × 10−3 |
● | × | × | × | × | ● | × | × | ● | 4.8 × 10−3 |
× | ● | × | ● | × | × | ● | × | × | 2.5 × 10−2 |
× | ● | × | ● | × | × | × | ● | × | 2.7 × 10−3 |
× | ● | × | ● | × | × | × | × | ● | 2.75 × 10−3 |
× | ● | × | × | ● | × | ● | × | × | 1.4 × 10−2 |
× | ● | × | × | ● | × | × | ● | × | 1.1 × 10−3 |
× | ● | × | × | ● | × | × | × | ● | 2.1 × 10−3 |
× | ● | × | × | × | ● | ● | × | × | 2.3 × 10−2 |
× | ● | × | × | × | ● | × | ● | × | 2.9 × 10−3 |
× | ● | × | × | × | ● | × | × | ● | 2.9 × 10−3 |
× | × | ● | ● | × | × | ● | × | × | 3.5 × 10−2 |
× | × | ● | ● | × | × | × | ● | × | 1.78 × 10−3 |
× | × | ● | ● | × | × | × | × | ● | 1.78 × 10−3 |
× | × | ● | × | ● | × | ● | × | × | 3.6 × 10−2 |
× | × | ● | × | ● | × | × | ● | × | 2.10 × 10−3 |
× | × | ● | × | ● | × | × | × | ● | 2.10 × 10−3 |
× | × | ● | × | × | ● | ● | × | × | 3.7 × 10−2 |
× | × | ● | × | × | ● | × | ● | × | 2.5 × 10−3 |
× | × | ● | × | × | ● | × | × | ● | 2.5 × 10−3 |
Year [Ref] | Brief Summary of Research Works |
---|---|
2020 [32] |
|
2020 [34] |
|
2021 [36] 2023 [35] |
|
This study |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faricha, A.; Yoshida, S.; Chakraborty, P.; Okamoto, K.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films. Sensors 2023, 23, 4132. https://doi.org/10.3390/s23084132
Faricha A, Yoshida S, Chakraborty P, Okamoto K, Chang T-FM, Sone M, Nakamoto T. Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films. Sensors. 2023; 23(8):4132. https://doi.org/10.3390/s23084132
Chicago/Turabian StyleFaricha, Anifatul, Shohei Yoshida, Parthojit Chakraborty, Keisuke Okamoto, Tso-Fu Mark Chang, Masato Sone, and Takamichi Nakamoto. 2023. "Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films" Sensors 23, no. 8: 4132. https://doi.org/10.3390/s23084132
APA StyleFaricha, A., Yoshida, S., Chakraborty, P., Okamoto, K., Chang, T. -F. M., Sone, M., & Nakamoto, T. (2023). Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films. Sensors, 23(8), 4132. https://doi.org/10.3390/s23084132