Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Plasmonic Nanoparticle—M13 Bacteriophage Biomaterial Thin Film Nanostructure
2.2. Atomic Force Microscopy
2.3. Optical Measurements
2.4. Three-Dimensional Electromagnetic Simulations
3. Results and Discussion
3.1. Fabrication Analysis and Optical Properties
3.2. Dynamic Response of M13 Bacteriophage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Willner, I.; Rubin, S. Control of the Structure and Functions of Biomaterials by Light. Angew. Chem. Int. Ed. Engl. 1996, 35, 367–385. [Google Scholar] [CrossRef]
- Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Ma, P.X.; Guo, B. Conductive Biomaterials for Muscle Tissue Engineering. Biomaterials 2020, 229, 119584. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, X.; Zhao, X.; Wang, Z.; Tang, Q.; Xu, H.; Liu, Y. Memristors with Biomaterials for Biorealistic Neuromorphic Applications. Small Sci. 2022, 2, 2200028. [Google Scholar] [CrossRef]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.A.C.; Sosa-Hernández, J.E.; Hussain, S.M.; Bilal, M.; Parra-Saldivar, R.; Iqbal, H.M.N. Bioinspired Biomaterials and Enzyme-Based Biosensors for Point-of-Care Applications with Reference to Cancer and Bio-Imaging. Biocatal. Agric. Biotechnol. 2019, 17, 168–176. [Google Scholar] [CrossRef]
- Oh, J.-W.; Chung, W.-J.; Heo, K.; Jin, H.-E.; Lee, B.Y.; Wang, E.; Zueger, C.; Wong, W.; Meyer, J.; Kim, C.; et al. Biomimetic Virus-Based Colourimetric Sensors. Nat. Commun. 2014, 5, 3043. [Google Scholar] [CrossRef]
- Moon, J.-S.; Kim, W.-G.; Kim, C.; Park, G.-T.; Heo, J.; Yoo, S.Y.; Oh, J.-W. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities. Mini-Rev. Org. Chem. 2015, 12, 271–281. [Google Scholar] [CrossRef]
- Chung, W.-J.; Lee, D.-Y.; Yoo, S.Y. Chemical Modulation of M13 Bacteriophage And Its Functional Opportunities for Nanomedicine. IJN 2014, 9, 5825–5836. [Google Scholar] [CrossRef]
- Heo, K.; Jin, H.-E.; Kim, H.; Lee, J.H.; Wang, E.; Lee, S.-W. Transient Self-Templating Assembly of M13 Bacteriophage for Enhanced Biopiezoelectric Devices. Nano Energy 2019, 56, 716–723. [Google Scholar] [CrossRef]
- Kim, I.; Moon, J.-S.; Oh, J.-W. Recent Advances in M13 Bacteriophage-Based Optical Sensing Applications. Nano Converg. 2016, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Hess, G.T.; Guimaraes, C.P.; Spooner, E.; Ploegh, H.L.; Belcher, A.M. Orthogonal Labeling of M13 Minor Capsid Proteins with DNA to Self-Assemble End-to-End Multiphage Structures. ACS Synth. Biol. 2013, 2, 490–496. [Google Scholar] [CrossRef]
- Tsedev, U.; Lin, C.-W.; Hess, G.T.; Sarkaria, J.N.; Lam, F.C.; Belcher, A.M. Phage Particles of Controlled Length and Genome for In Vivo Targeted Glioblastoma Imaging and Therapeutic Delivery. ACS Nano 2022, 16, 11676–11691. [Google Scholar] [CrossRef]
- Ngo-Duc, T.-T.; Plank, J.M.; Chen, G.; Harrison, R.E.S.; Morikis, D.; Liu, H.; Haberer, E.D. M13 Bacteriophage Spheroids as Scaffolds for Directed Synthesis of Spiky Gold Nanostructures. Nanoscale 2018, 10, 13055–13063. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, V.; Han, J.; Kim, C.; Kang, Y.-C.; Oh, J.-W. Self-Assembled Nanoporous Biofilms from Functionalized Nanofibrous M13 Bacteriophage. Viruses 2018, 10, 322. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, C.; Wu, B.; Wang, J.; Qu, S.; Weng, J.; Feng, B. Fabrication of Nanostructured M13 Bacteriophage Films on Titanium Surfaces. Mater. Lett. 2016, 182, 39–42. [Google Scholar] [CrossRef]
- Chung, S.; Chung, W.-J.; Wang, D.; Lee, S.-W.; Yoreo, J.J.D. Growth of Au and ZnS Nanostructures via Engineered Peptide and M13 Bacteriophage Templates. Soft Matter 2018, 14, 2996–3002. [Google Scholar] [CrossRef]
- Manivannan, S.; Lee, D.; Kang, D.-K.; Kim, K. M13 Virus-Templated Open Mouth-like Platinum Nanostructures Prepared by Electrodeposition: Influence of M13-Virus on Structure and Electrocatalytic Activity. J. Electroanal. Chem. 2020, 879, 114755. [Google Scholar] [CrossRef]
- Zhan, S.; Fang, H.; Chen, Q.; Xiong, S.; Guo, Y.; Huang, T.; Li, X.; Leng, Y.; Huang, X.; Xiong, Y. M13 Bacteriophage as Biometric Component for Orderly Assembly of Dynamic Light Scattering Immunosensor. Biosens. Bioelectron. 2022, 217, 114693. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.-H.; Lee, J.H.; Lee, B.Y.; Lee, B.D.; Okada, K.; Ji, S.; Yoon, J.; Lee, J.H.; Lee, S.-W. M13 Virus Triboelectricity and Energy Harvesting. Nano Lett. 2021, 21, 6851–6858. [Google Scholar] [CrossRef]
- Lee, J.H.; Fan, B.; Samdin, T.D.; Monteiro, D.A.; Desai, M.S.; Scheideler, O.; Jin, H.-E.; Kim, S.; Lee, S.-W. Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System. ACS Nano 2017, 11, 3632–3641. [Google Scholar] [CrossRef]
- Lee, S.-W.; Mao, C.; Flynn, C.E.; Belcher, A.M. Ordering of Quantum Dots Using Genetically Engineered Viruses. Science 2002, 296, 892–895. [Google Scholar] [CrossRef] [PubMed]
- Park, I.W.; Kim, K.W.; Hong, Y.; Yoon, H.J.; Lee, Y.; Gwak, D.; Heo, K. Recent Developments and Prospects of M13- Bacteriophage Based Piezoelectric Energy Harvesting Devices. Nanomaterials 2020, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Han, S.M.; Lee, Y.J.; Lee, M.H.; Park, C.W.; Lee, S.M.; Soh, J.O.; Lee, J.H. M13 Bacteriophage-Based Bio-Nano Systems for Bioapplication. BioChip J. 2022, 16, 227–245. [Google Scholar] [CrossRef]
- Courchesne, N.-M.D.; Klug, M.T.; Chen, P.-Y.; Kooi, S.E.; Yun, D.S.; Hong, N.; Fang, N.X.; Belcher, A.M.; Hammond, P.T. Assembly of a Bacteriophage-Based Template for the Organization of Materials into Nanoporous Networks. Adv. Mater. 2014, 26, 3398–3404. [Google Scholar] [CrossRef]
- Records, W.C.; Yoon, Y.; Ohmura, J.F.; Chanut, N.; Belcher, A.M. Virus-Templated Pt–Ni(OH)2 Nanonetworks for Enhanced Electrocatalytic Reduction of Water. Nano Energy 2019, 58, 167–174. [Google Scholar] [CrossRef]
- Neltner, B.; Peddie, B.; Xu, A.; Doenlen, W.; Durand, K.; Yun, D.S.; Speakman, S.; Peterson, A.; Belcher, A. Production of Hydrogen Using Nanocrystalline Protein-Templated Catalysts on M13 Phage. ACS Nano 2010, 4, 3227–3235. [Google Scholar] [CrossRef]
- Mao, C.; Solis, D.J.; Reiss, B.D.; Kottmann, S.T.; Sweeney, R.Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A.M. Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science 2004, 303, 213–217. [Google Scholar] [CrossRef]
- Ghosh, D.; Kohli, A.G.; Moser, F.; Endy, D.; Belcher, A.M. Refactored M13 Bacteriophage as a Platform for Tumor Cell Imaging and Drug Delivery. ACS Synth. Biol. 2012, 1, 576–582. [Google Scholar] [CrossRef]
- Lee, J.-M.; Devaraj, V.; Jeong, N.-N.; Lee, Y.; Kim, Y.-J.; Kim, T.; Yi, S.H.; Kim, W.-G.; Choi, E.J.; Kim, H.-M.; et al. Neural Mechanism Mimetic Selective Electronic Nose Based on Programmed M13 Bacteriophage. Biosens. Bioelectron. 2022, 196, 113693. [Google Scholar] [CrossRef]
- Lee, J.-M.; Lee, Y.; Devaraj, V.; Nguyen, T.M.; Kim, Y.-J.; Kim, Y.H.; Kim, C.; Choi, E.J.; Han, D.-W.; Oh, J.-W. Investigation of Colorimetric Biosensor Array Based on Programable Surface Chemistry of M13 Bacteriophage towards Artificial Nose for Volatile Organic Compound Detection: From Basic Properties of the Biosensor to Practical Application. Biosens. Bioelectron. 2021, 188, 113339. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Ladewski, R.; Miller, R.; Dang, X.; Qi, J.; Liau, F.; Belcher, A.M.; Hammond, P.T. Layer-by-Layer Assembled Porous Photoanodes for Efficient Electron Collection in Dye-Sensitized Solar Cells. J. Mater. Chem. A 2013, 1, 2217–2224. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Dang, X.; Klug, M.T.; Qi, J.; Dorval Courchesne, N.-M.; Burpo, F.J.; Fang, N.; Hammond, P.T.; Belcher, A.M. Versatile Three-Dimensional Virus-Based Template for Dye-Sensitized Solar Cells with Improved Electron Transport and Light Harvesting. ACS Nano 2013, 7, 6563–6574. [Google Scholar] [CrossRef]
- Nguyen, T.M.; Kim, S.-J.; Devaraj, V.; Song, H.; Lee, J.-M.; Choi, E.J.; Kim, Y.-J.; Jang, M.; Kim, Y.H.; Jeong, H.; et al. Biomaterial Actuator of M13 Bacteriophage in Dynamically Tunable Plasmonic Coupling Structure. Sens. Actuators B Chem. 2022, 369, 132326. [Google Scholar] [CrossRef]
- Sokullu, E.; Pinsard, M.; Zhang, J.; Plathier, J.; Kolhatkar, G.; Blum, A.S.; Légaré, F.; Ruediger, A.; Ozaki, T.; Gauthier, M.A. Plasmonic Enhancement of Two-Photon Excitation Fluorescence by Colloidal Assemblies of Very Small AuNPs Templated on M13 Phage. Biomacromolecules 2020, 21, 2705–2713. [Google Scholar] [CrossRef]
- Hou, J.; Xu, Y.; Sun, S.; Zhong, X.; Yang, C.-T.; Zhou, X. Gold Nanoparticles-Decorated M13 Phage SPR Probe for Dual Detection of Antigen Biomarkers in Serum. Sens. Actuators B Chem. 2023, 374, 132811. [Google Scholar] [CrossRef]
- Karoonuthaisiri, N.; Charlermroj, R.; Morton, M.J.; Oplatowska-Stachowiak, M.; Grant, I.R.; Elliott, C.T. Development of a M13 Bacteriophage-Based SPR Detection Using Salmonella as a Case Study. Sens. Actuators B Chem. 2014, 190, 214–220. [Google Scholar] [CrossRef]
- Pourakbari, R.; Yousefi, M.; Khalilzadeh, B.; Irani-nezhad, M.H.; Khataee, A.; Aghebati-Maleki, L.; Soleimanian, A.; Kamrani, A.; Chakari-Khiavi, F.; Abolhasan, R.; et al. Early Stage Evaluation of Colon Cancer Using Tungsten Disulfide Quantum Dots and Bacteriophage Nano-Biocomposite as an Efficient Electrochemical Platform. Cancer Nanotechnol. 2022, 13, 7. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Song, D.; Xu, K.; Zheng, Y.; Xiao, H.; Liu, Y.; Li, J.; Song, X. Simultaneous Detection of Three Zoonotic Pathogens Based on Phage Display Peptide and Multicolor Quantum Dots. Anal. Biochem. 2020, 608, 113854. [Google Scholar] [CrossRef]
- Yi Lai, J.; Inoue, N.; Wei Oo, C.; Kawasaki, H.; Soon Lim, T. One-Step Synthesis of M13 Phage-Based Nanoparticles and Their Fluorescence Properties. RSC Adv. 2021, 11, 1367–1375. [Google Scholar] [CrossRef]
- Wen, A.M.; Podgornik, R.; Strangi, G.; Steinmetz, N.F. Photonics and Plasmonics Go Viral: Self-Assembly of Hierarchical Metamaterials. Rend. Lincei 2015, 26, 129–141. [Google Scholar] [CrossRef]
- Petrescu, D.S.; Blum, A.S. Viral-based Nanomaterials for Plasmonic and Photonic Materials and Devices. WIREs Nanomed. Nanobiotechnol. 2018, 10, e1508. [Google Scholar] [CrossRef] [PubMed]
- Chou Chau, Y.-F.; Jiang, J.-C.; Chou Chao, C.-T.; Chiang, H.-P.; Lim, C.M. Manipulating near Field Enhancement and Optical Spectrum in a Pair-Array of the Cavity Resonance Based Plasmonic Nanoantennas. J. Phys. D Appl. Phys. 2016, 49, 475102. [Google Scholar] [CrossRef]
- Chou Chau, Y.-F.; Ming, T.Y.; Chou Chao, C.-T.; Thotagamuge, R.; Kooh, M.R.R.; Huang, H.J.; Lim, C.M.; Chiang, H.-P. Significantly Enhanced Coupling Effect and Gap Plasmon Resonance in a MIM-Cavity Based Sensing Structure. Sci. Rep. 2021, 11, 18515. [Google Scholar] [CrossRef]
- Devaraj, V.; Lee, I.H.; Kim, M.; Nguyen, T.M.; Son, J.P.; Lee, J.-M.; Lee, D.; Kim, K.H.; Oh, J.-W. Unveiling Facet Effects in Metallic Nanoparticles to Design an Efficient Plasmonic Nanostructure. Curr. Appl. Phys. 2022, 44, 22–28. [Google Scholar] [CrossRef]
- Kim, W.-G.; Devaraj, V.; Yang, Y.; Lee, J.-M.; Kim, J.T.; Oh, J.-W.; Rho, J. Three-Dimensional Plasmonic Nanoclusters Driven by Co-Assembly of Thermo-Plasmonic Nanoparticles and Colloidal Quantum Dots. Nanoscale 2022, 14, 16450–16457. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- McPeak, K.M.; Jayanti, S.V.; Kress, S.J.P.; Meyer, S.; Iotti, S.; Rossinelli, A.; Norris, D.J. Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics 2015, 2, 326–333. [Google Scholar] [CrossRef]
- Devaraj, V.; Choi, J.-W.; Lee, J.-M.; Oh, J.-W. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials 2022, 15, 792. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.M.; Choi, C.W.; Lee, J.-E.; Heo, D.; Lee, Y.-W.; Gu, S.-H.; Choi, E.J.; Lee, J.-M.; Devaraj, V.; Oh, J.-W. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. Sensors 2023, 23, 6011. https://doi.org/10.3390/s23136011
Nguyen TM, Choi CW, Lee J-E, Heo D, Lee Y-W, Gu S-H, Choi EJ, Lee J-M, Devaraj V, Oh J-W. Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. Sensors. 2023; 23(13):6011. https://doi.org/10.3390/s23136011
Chicago/Turabian StyleNguyen, Thanh Mien, Cheol Woong Choi, Ji-Eun Lee, Damun Heo, Ye-Won Lee, Sun-Hwa Gu, Eun Jeong Choi, Jong-Min Lee, Vasanthan Devaraj, and Jin-Woo Oh. 2023. "Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model" Sensors 23, no. 13: 6011. https://doi.org/10.3390/s23136011
APA StyleNguyen, T. M., Choi, C. W., Lee, J. -E., Heo, D., Lee, Y. -W., Gu, S. -H., Choi, E. J., Lee, J. -M., Devaraj, V., & Oh, J. -W. (2023). Understanding the Role of M13 Bacteriophage Thin Films on a Metallic Nanostructure through a Standard and Dynamic Model. Sensors, 23(13), 6011. https://doi.org/10.3390/s23136011