Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction
Abstract
:1. Introduction
- The application of the Christiano–Fitzgerald random walk filter for noise mitigation in the context of power grid insulator contamination.
- The group method of data handling has shown less time needed for training and superior performance to the LSTM.
- The development of a hybrid method for time-series-based failure prediction, focusing on evaluating the increasing trend of leakage current.
2. Related Works
3. Problem Description and Laboratory Analysis
4. Methodology
4.1. Group Method of Data Handling
4.2. Christiano–Fitzgerald Random Walk Filter
4.3. CFRW-GMDH Hybrid Method
Algorithm 1: CFRW-GMDH Hybrid Method |
4.4. Seasonal Decomposition using Moving Averages
4.5. Long Short-Term Memory
4.6. Experiment Setup
5. Experiments and Discussion
5.1. Filter Evaluation
5.2. Benchmarking Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salem, A.A.; Lau, K.Y.; Rahiman, W.; Abdul-Malek, Z.; Al-Gailani, S.A.; Mohammed, N.; Rahman, R.A.; Al-Ameri, S.M. Pollution flashover voltage of transmission line insulators: Systematic review of experimental works. IEEE Access 2022, 10, 10416–10444. [Google Scholar] [CrossRef]
- Souza, B.J.; Stefenon, S.F.; Singh, G.; Freire, R.Z. Hybrid-YOLO for classification of insulators defects in transmission lines based on UAV. Int. J. Electr. Power Energy Syst. 2023, 148, 108982. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.; Zhang, H.; Wang, Z.; Xu, W. Insulator-defect detection algorithm based on improved YOLOv7. Sensors 2022, 22, 8801. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.A.; Lau, K.Y.; Rahiman, W.; Al-Gailani, S.A.; Abdul-Malek, Z.; Abd Rahman, R.; Al-Ameri, S.M.; Sheikh, U.U. Pollution flashover characteristics of coated insulators under different profiles of coating damage. Coatings 2021, 11, 1194. [Google Scholar] [CrossRef]
- Corso, M.P.; Perez, F.L.; Stefenon, S.F.; Yow, K.C.; García Ovejero, R.; Leithardt, V.R.Q. Classification of contaminated insulators using k-nearest neighbors based on computer vision. Computers 2021, 10, 112. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Yow, K.C.; Nied, A.; Meyer, L.H. Classification of distribution power grid structures using inception v3 deep neural network. Electr. Eng. 2022, 104, 4557–4569. [Google Scholar] [CrossRef]
- Salem, A.A.; Abd-Rahman, R.; Al-Gailani, S.A.; Kamarudin, M.S.; Ahmad, H.; Salam, Z. The Leakage Current Components as a Diagnostic Tool to Estimate Contamination Level on High Voltage Insulators. IEEE Access 2020, 8, 92514–92528. [Google Scholar] [CrossRef]
- Araya, J.; Montaña, J.; Schurch, R. Electric field distribution and leakage currents in glass insulator under different altitudes and pollutions conditions using FEM simulations. IEEE Lat. Am. Trans. 2021, 19, 1278–1285. [Google Scholar] [CrossRef]
- Singh, G.; Stefenon, S.F.; Yow, K.C. Interpretable visual transmission lines inspections using pseudo-prototypical part network. Mach. Vis. Appl. 2023, 34, 41. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Y.; Liu, X.; Djike, C.L.T.; Li, J.; Liu, Y.; Ma, J.; Xu, K.; Zhang, C. Infrared image detection of substation insulators using an improved fusion single shot multibox detector. IEEE Trans. Power Deliv. 2021, 36, 3351–3359. [Google Scholar] [CrossRef]
- Kim, Y.; Shong, K. The characteristics of UV strength according to corona discharge from polymer insulators using a UV sensor and optic lens. IEEE Trans. Power Deliv. 2011, 26, 1579–1584. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Ribeiro, M.H.D.M.; Nied, A.; Mariani, V.C.; Coelho, L.S.; Leithardt, V.R.Q.; Silva, L.A.; Seman, L.O. Hybrid wavelet stacking ensemble model for insulators contamination forecasting. IEEE Access 2021, 9, 66387–66397. [Google Scholar] [CrossRef]
- Park, K.C.; Motai, Y.; Yoon, J.R. Acoustic fault detection technique for high-power insulators. IEEE Trans. Ind. Electron. 2017, 64, 9699–9708. [Google Scholar] [CrossRef]
- Zhou, F.; Jin, W.; Zheng, Z.; Mou, F.; Li, Z.; Ma, Y.; Wei, B.; Huang, S.; Wang, Q. Insulator detection for high-resolution satellite images based on deep learning. IEEE Geosci. Remote Sens. Lett. 2023, 20, 5001105. [Google Scholar] [CrossRef]
- Salem, A.A.; Lau, K.Y.; Abdul-Malek, Z.; Zhou, W.; Al-Ameri, S.; Al-Gailani, S.A.; Rahman, R.A. Investigation of high voltage polymeric insulators performance under wet pollution. Polymers 2022, 14, 1236. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Bruns, R.; Sartori, A.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Analysis of the ultrasonic signal in polymeric contaminated insulators through ensemble learning methods. IEEE Access 2022, 10, 33980–33991. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A review on state-of-the-art power line inspection techniques. IEEE Trans. Instrum. Meas. 2020, 69, 9350–9365. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Corso, M.P.; Nied, A.; Perez, F.L.; Yow, K.C.; Gonzalez, G.V.; Leithardt, V.R.Q. Classification of insulators using neural network based on computer vision. IET Gener. Transm. Distrib. 2022, 16, 1096–1107. [Google Scholar] [CrossRef]
- Salem, A.A.; Lau, K.Y.; Abdul-Malek, Z.; Al-Gailani, S.A.; Tan, C.W. Flashover voltage of porcelain insulator under various pollution distributions: Experiment and modeling. Electr. Power Syst. Res. 2022, 208, 107867. [Google Scholar] [CrossRef]
- Ahmed, R.; Abd Rahman, R.; Jamal, A.; Salem, A.A.; Saman, B.; Lau, K.Y.; Ghoneim, S.S. Field-dependent pollution model under polluted environments for outdoor polymeric insulators. Polymers 2022, 14, 516. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Furtado Neto, C.S.; Coelho, T.S.; Nied, A.; Yamaguchi, C.K.; Yow, K.C. Particle swarm optimization for design of insulators of distribution power system based on finite element method. Electr. Eng. 2022, 104, 615–622. [Google Scholar] [CrossRef]
- Salem, A.A.; Lau, K.Y.; Abdul-Malek, Z.; Tan, C.W. Classifying insulator conditions of room temperature vulcanized coated glass insulators under different coating damage modes. Measurement 2022, 194, 111032. [Google Scholar] [CrossRef]
- Lazcano, A.; Herrera, P.J.; Monge, M. A combined model based on recurrent neural networks and graph convolutional networks for financial time series forecasting. Mathematics 2023, 11, 224. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Aquino, L.S.; dos Santos Coelho, L. Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants. Energy 2023, 274, 127350. [Google Scholar] [CrossRef]
- Klaar, A.C.R.; Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Structure optimization of ensemble learning methods and seasonal decomposition approaches to energy price forecasting in Latin America: A case study about Mexico. Energies 2023, 16, 3184. [Google Scholar] [CrossRef]
- Cheng, Y.; Xing, W.; Pedrycz, W.; Xian, S.; Liu, W. NFIG-X: Non-linear fuzzy information granule series for long-term traffic flow time series forecasting. IEEE Trans. Fuzzy Syst. 2023, 1–16. [Google Scholar] [CrossRef]
- Vaughan, L.; Zhang, M.; Gu, H.; Rose, J.B.; Naughton, C.C.; Medema, G.; Allan, V.; Roiko, A.; Blackall, L.; Zamyadi, A. An exploration of challenges associated with machine learning for time series forecasting of COVID-19 community spread using wastewater-based epidemiological data. Sci. Total Environ. 2023, 858, 159748. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.; Sartori, A.; Stefenon, S.F.; Meyer, L.H.; Nied, A. Comparison of artificial intelligence techniques to failure prediction in contaminated insulators based on leakage current. J. Intell. Fuzzy Syst. 2022, 42, 3285–3298. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Freire, R.Z.; Silva Ferreira, F.C.; Bertol, D.W.; Nied, A. Photovoltaic power forecasting using wavelet neuro-fuzzy for active solar trackers. J. Intell. Fuzzy Syst. 2021, 40, 1083–1096. [Google Scholar] [CrossRef]
- Fernandes, F.; Stefenon, S.F.; Seman, L.O.; Nied, A.; Ferreira, F.C.S.; Subtil, M.C.M.; Klaar, A.C.R.; Leithardt, V.R.Q. Long short-term memory stacking model to predict the number of cases and deaths caused by COVID-19. J. Intell. Fuzzy Syst. 2022, 6, 6221–6234. [Google Scholar] [CrossRef]
- Sopelsa Neto, N.F.; Stefenon, S.F.; Meyer, L.H.; Ovejero, R.G.; Leithardt, V.R.Q. Fault prediction based on leakage current in contaminated insulators using enhanced time series forecasting models. Sensors 2022, 22, 6121. [Google Scholar] [CrossRef]
- Branco, N.W.; Cavalca, M.S.M.; Stefenon, S.F.; Leithardt, V.R.Q. Wavelet LSTM for fault forecasting in electrical power grids. Sensors 2022, 22, 8323. [Google Scholar] [CrossRef]
- Ribeiro, M.H.D.M.; da Silva, R.G.; Ribeiro, G.T.; Mariani, V.C.; dos Santos Coelho, L. Cooperative ensemble learning model improves electric short-term load forecasting. Chaos Solitons Fractals 2023, 166, 112982. [Google Scholar] [CrossRef]
- da Silva, R.G.; Moreno, S.R.; Ribeiro, M.H.D.M.; Larcher, J.H.K.; Mariani, V.C.; dos Santos Coelho, L. Multi-step short-term wind speed forecasting based on multi-stage decomposition coupled with stacking-ensemble learning approach. Int. J. Electr. Power Energy Syst. 2022, 143, 108504. [Google Scholar] [CrossRef]
- Chughtai, J.u.R.; Haq, I.u.; Islam, S.u.; Gani, A. A heterogeneous ensemble approach for travel time prediction using hybridized feature spaces and support vector regression. Sensors 2022, 22, 9735. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Hughes, M. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Barrera-Animas, A.Y.; Oyedele, L.O.; Bilal, M.; Akinosho, T.D.; Delgado, J.M.D.; Akanbi, L.A. Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting. Mach. Learn. Appl. 2022, 7, 100204. [Google Scholar] [CrossRef]
- Tan, M.; Yuan, S.; Li, S.; Su, Y.; Li, H.; He, F. Ultra-short-term industrial power demand forecasting using LSTM based hybrid ensemble learning. IEEE Trans. Power Syst. 2020, 35, 2937–2948. [Google Scholar] [CrossRef]
- Matrenin, P.; Safaraliev, M.; Dmitriev, S.; Kokin, S.; Ghulomzoda, A.; Mitrofanov, S. Medium-term load forecasting in isolated power systems based on ensemble machine learning models. Energy Rep. 2022, 8, 612–618. [Google Scholar] [CrossRef]
- Sauer, J.; Mariani, V.C.; dos Santos Coelho, L.; Ribeiro, M.H.D.M.; Rampazzo, M. Extreme gradient boosting model based on improved Jaya optimizer applied to forecasting energy consumption in residential buildings. Evol. Syst. 2022, 13, 577–588. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Dal Molin Ribeiro, M.H.; Nied, A.; Mariani, V.C.; Coelho, L.S.; Menegat da Rocha, D.F.; Grebogi, R.B.; de Barros Ruano, A.E. Wavelet group method of data handling for fault prediction in electrical power insulators. Int. J. Electr. Power Energy Syst. 2020, 123, 106269. [Google Scholar] [CrossRef]
- Qin, Q.; Huang, Z.; Zhou, Z.; Chen, Y.; Zhao, W. Hodrick–Prescott filter-based hybrid ARIMA–SLFNs model with residual decomposition scheme for carbon price forecasting. Appl. Soft Comput. 2022, 119, 108560. [Google Scholar] [CrossRef]
- Klarl, T. The response of CO2 emissions to the business cycle: New evidence for the U.S. Energy Econ. 2020, 85, 104560. [Google Scholar] [CrossRef]
- Weron, R.; Zator, M. A note on using the Hodrick–Prescott filter in electricity markets. Energy Econ. 2015, 48, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, Y.; Tanaka, G. Multi-reservoir echo state networks with Hodrick–Prescott filter for non-linear time-series prediction. Appl. Soft Comput. 2023, 135, 110021. [Google Scholar] [CrossRef]
- Dutra, T.M.; Dias, J.C.; Teixeira, J.C. Measuring financial cycles: Empirical evidence for Germany, United Kingdom and United States of America. Int. Rev. Econ. Financ. 2022, 79, 599–630. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D. Deep learning based recommender system using cross convolutional filters. Inf. Sci. 2022, 592, 112–122. [Google Scholar] [CrossRef]
- Apaydin, H.; Taghi Sattari, M.; Falsafian, K.; Prasad, R. Artificial intelligence modelling integrated with singular spectral analysis and seasonal-trend decomposition using loess approaches for streamflow predictions. J. Hydrol. 2021, 600, 126506. [Google Scholar] [CrossRef]
- Tebong, N.K.; Simo, T.; Takougang, A.N.; Ntanguen, P.H. STL-decomposition ensemble deep learning models for daily reservoir inflow forecast for hydroelectricity production. Heliyon 2023, 9, e16456. [Google Scholar] [CrossRef]
- Qin, L.; Li, W.; Li, S. Effective passenger flow forecasting using STL and ESN based on two improvement strategies. Neurocomputing 2019, 356, 244–256. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Oliveira, J.R.; Coelho, A.S.; Meyer, L.H. Diagnostic of insulators of conventional grid through LabVIEW analysis of FFT signal generated from ultrasound detector. IEEE Lat. Am. Trans. 2017, 15, 884–889. [Google Scholar] [CrossRef]
- Salem, A.A.; Lau, K.Y.; Rahiman, W.; Abdul-Malek, Z.; Al-Gailani, S.A.; Rahman, R.A.; Al-Ameri, S. Leakage current characteristics in estimating insulator reliability: Experimental investigation and analysis. Sci. Rep. 2022, 12, 14974. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.A.; Lau, K.Y.; Ishak, M.T.; Abdul-Malek, Z.; Al-Gailani, S.A.; Al-Ameri, S.M.; Mohammed, A.; Alashbi, A.A.S.; Ghoneim, S.S.M. Monitoring porcelain insulator condition based on leakage current characteristics. Materials 2022, 15, 6370. [Google Scholar] [CrossRef]
- Seman, L.O.; Stefenon, S.F.; Mariani, V.C.; dos Santos Coelho, L. Ensemble learning methods using the Hodrick–Prescott filter for fault forecasting in insulators of the electrical power grids. Int. J. Electr. Power Energy Syst. 2023, 152, 109269. [Google Scholar] [CrossRef]
- Klaar, A.C.R.; Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Optimized EWT-Seq2Seq-LSTM with attention mechanism to insulators fault prediction. Sensors 2023, 23, 3202. [Google Scholar] [CrossRef] [PubMed]
- Jalles, J.T.; Ge, J. Emissions and economic development in commodity exporting countries. Energy Econ. 2020, 85, 104572. [Google Scholar] [CrossRef]
- Dorn, M.; Braga, A.L.; Llanos, C.H.; Coelho, L.S. A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides. Expert Syst. Appl. 2012, 39, 12268–12279. [Google Scholar] [CrossRef]
- Amiri, M.; Soleimani, S. ML-based group method of data handling: An improvement on the conventional GMDH. Complex Intell. Syst. 2021, 7, 2949–2960. [Google Scholar] [CrossRef]
- Nachane, D.; Chaubal, A. A comparative evaluation of some DSP filters vis-à-vis commonly used economic filters. J. Quant. Econ. 2022, 20, 161–190. [Google Scholar] [CrossRef]
- Kufenko, V. Hide-and-seek with time-series filters: A model-based monte carlo study. Empir. Econ. 2020, 59, 2335–2361. [Google Scholar] [CrossRef]
- Kumar, K.; Ansari, Z.N.; Paramanik, R.N. Nexus between financial cycle and business cycle in India. Financ. Landsc. Emerg. Econ. Curr. State Chall. Solut. 2020, 15–27. [Google Scholar] [CrossRef]
- Bhowmik, D.; Poddar, S. Cyclical and seasonal patterns of India’s GDP growth rate through the eyes of Hamilton and Hodrick Prescott Filter models. Asia-Pac. J. Manag. Technol. (AJMT) 2021, 1, 7–17. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Seman, L.O.; Mariani, V.C.; Coelho, L.S. Aggregating prophet and seasonal trend decomposition for time series forecasting of Italian electricity spot prices. Energies 2023, 16, 1371. [Google Scholar] [CrossRef]
- He, H.; Gao, S.; Jin, T.; Sato, S.; Zhang, X. A seasonal-trend decomposition-based dendritic neuron model for financial time series prediction. Appl. Soft Comput. 2021, 108, 107488. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gong, J.; Shu, X.; Zhang, K. The prediction of dam displacement time series using STL, extra-trees, and stacked LSTM neural network. IEEE Access 2020, 8, 94440–94452. [Google Scholar] [CrossRef]
- Stefenon, S.F.; Kasburg, C.; Nied, A.; Klaar, A.C.R.; Ferreira, F.C.S.; Branco, N.W. Hybrid deep learning for power generation forecasting in active solar trackers. IET Gener. Transm. Distrib. 2020, 14, 5667–5674. [Google Scholar] [CrossRef]
- Mahjoub, S.; Chrifi-Alaoui, L.; Marhic, B.; Delahoche, L. Predicting energy consumption using LSTM, multi-layer GRU and drop-GRU neural networks. Sensors 2022, 22, 4062. [Google Scholar] [CrossRef]
- Fouladgar, N.; Främling, K. A novel LSTM for multivariate time series with massive missingness. Sensors 2020, 20, 2832. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, L.; Li, N.; Tian, J. Time series forecasting of motor bearing vibration based on informer. Sensors 2022, 22, 5858. [Google Scholar] [CrossRef]
- González-Enrique, J.; Ruiz-Aguilar, J.J.; Moscoso-López, J.A.; Urda, D.; Deka, L.; Turias, I.J. Artificial neural networks, sequence-to-sequence LSTMs, and exogenous variables as analytical tools for NO2 (air pollution) forecasting: A case study in the Bay of Algeciras (Spain). Sensors 2021, 21, 1770. [Google Scholar] [CrossRef]
- Borré, A.; Seman, L.O.; Camponogara, E.; Stefenon, S.F.; Mariani, V.C.; Coelho, L.S. Machine fault detection using a hybrid CNN-LSTM attention-based model. Sensors 2023, 23, 4512. [Google Scholar] [CrossRef] [PubMed]
- Sagheer, A.; Hamdoun, H.; Youness, H. Deep LSTM-based transfer learning approach for coherent forecasts in hierarchical time series. Sensors 2021, 21, 4379. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, X.; Zeng, C.; He, X.; Chen, F.; Zhu, B. Temperature prediction of seasonal frozen subgrades based on CEEMDAN-LSTM hybrid model. Sensors 2022, 22, 5742. [Google Scholar] [CrossRef] [PubMed]
Train_Test (%) | RMSE | MSE | MAPE | MAE | R | Time (s) |
---|---|---|---|---|---|---|
50_50 | 6.33 | 4.01 | 5.94 | 9.24 | 0.4174 | 5.53 |
60_40 | 1.10 | 1.22 | 7.17 | 1.45 | 0.9828 | 7.56 |
70_30 | 6.65 | 4.42 | 4.63 | 8.29 | 0.9945 | 9.03 |
80_20 | 7.91 | 6.26 | 1.40 | 2.05 | 0.9936 | 10.10 |
90_10 | 1.01 | 1.02 | 2.85 | 4.47 | 0.9901 | 12.75 |
Layers | RMSE | MSE | MAPE | MAE | R | Time (s) |
---|---|---|---|---|---|---|
2 | 6.21 | 3.86 | 1.82 | 2.75 | 0.9952 | 0.89 |
3 | 6.50 | 4.22 | 9.43 | 1.43 | 0.9947 | 9.30 |
4 | 9.96 | 9.92 | 4.48 | 7.46 | - | 18.18 |
5 | 1.67 | 2.80 | 2.33 | 4.10 | 0.9651 | 27.64 |
6 | 1.90 | 3.60 | 4.46 | 7.71 | - | 37.80 |
Neurons | RMSE | MSE | MAPE | MAE | R | Time (s) |
---|---|---|---|---|---|---|
5 | 7.02 | 4.92 | 1.89 | 2.77 | 0.9939 | 0.77 |
10 | 6.51 | 4.23 | 1.18 | 1.85 | 0.9947 | 1.22 |
50 | 6.47 | 4.18 | 1.08 | 1.54 | 0.9948 | 9.22 |
100 | 6.24 | 3.89 | 1.33 | 1.91 | 0.9952 | 10.14 |
500 | 6.19 | 3.84 | 1.20 | 1.74 | 0.9952 | 9.73 |
1000 | 6.14 | 3.76 | 8.55 | 1.36 | 0.9953 | 9.22 |
5000 | 6.61 | 4.37 | 1.36 | 1.97 | 0.9946 | 9.05 |
Method | Measure | Mean | Median | Std Deviation | Variance |
---|---|---|---|---|---|
Standard GMDH | RMSE | 1.59 | 6.94 | 2.59 | 6.72 |
MSE | 9.11 | 4.82 | 3.32 | 1.11 | |
MAPE | 2.13 | 1.33 | 2.58 | 6.67 | |
MAE | 3.29 | 2.00 | 4.21 | 1.77 | |
CFRW- GMDH | RMSE | 3.42 | 3.44 | 1.39 | 1.93 |
MSE | 1.17 | 1.18 | 9.46 | 8.96 | |
MAPE | 7.35 | 7.35 | 3.18 | 1.01 | |
MAE | 9.21 | 9.22 | 4.20 | 1.76 |
Model | RMSE | MSE | MAPE | MAE | R | Time (s) |
---|---|---|---|---|---|---|
Standard LSTM | 3.24 | 1.05 | 1.61 | 1.90 | 0.8696 | 305.57 |
CFRW- LSTM | 3.02 | 9.15 | 1.20 | 1.47 | 0.8819 | 304.86 |
Standard GMDH | 7.93 | 6.29 | 1.41 | 1.80 | 0.9922 | 8.83 |
Proposed method | 3.44 | 1.18 | 7.42 | 9.31 | 1.0000 | 9.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefenon, S.F.; Seman, L.O.; Sopelsa Neto, N.F.; Meyer, L.H.; Mariani, V.C.; Coelho, L.d.S. Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction. Sensors 2023, 23, 6118. https://doi.org/10.3390/s23136118
Stefenon SF, Seman LO, Sopelsa Neto NF, Meyer LH, Mariani VC, Coelho LdS. Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction. Sensors. 2023; 23(13):6118. https://doi.org/10.3390/s23136118
Chicago/Turabian StyleStefenon, Stefano Frizzo, Laio Oriel Seman, Nemesio Fava Sopelsa Neto, Luiz Henrique Meyer, Viviana Cocco Mariani, and Leandro dos Santos Coelho. 2023. "Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction" Sensors 23, no. 13: 6118. https://doi.org/10.3390/s23136118
APA StyleStefenon, S. F., Seman, L. O., Sopelsa Neto, N. F., Meyer, L. H., Mariani, V. C., & Coelho, L. d. S. (2023). Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction. Sensors, 23(13), 6118. https://doi.org/10.3390/s23136118