Investigating the Impact of Guided Imagery on Stress, Brain Functions, and Attention: A Randomized Trial
Abstract
:1. Exploring the Impact of Relaxation Techniques on Brain Wave Activity and Attentional Performance: A Review of Relevant Research
2. The Potential Benefits of Guided Imagery for Executive Function and Attentional Control and Research Hypotheses
3. Materials and Methods
3.1. Materials
- Scales of Helplessness and Anxiety of Contracting an Infectious Disease by Rydzewska, K. and Sędek, G. 2020 unpublished research materials from SWPS University of Social Sciences and Humanities. These measures were used to indicate the potential role of high levels of maladaptive emotions in impeding rational decision making during the pandemic.
- The State-Trait Anxiety Inventory (STAI) is a self-reporting questionnaire designed to measure anxiety in adults. The STAI questionnaire is often used in medical and research settings to help identify people who may need treatment for anxiety [77]. It can also help to measure the effectiveness of treatments designed to reduce anxiety.
- Following both the GI and mental task sessions, participants underwent attentional tests to test the hypothesis that GI can enhance attentional control.The anti-saccade test—attention control was designed according to the recommendations of the Antoniades protocol. In prosaccade trials, the object appears at the location of the cue, so the discrimination of stimuli is relatively easy. The primary indicator in this task is the average percentage of correct responses for the anti-saccade blocks.The numerical Stroop Test is a variation of the classic Stroop test that uses numbers instead of words. The test is designed to create interference between the automatic response of reading the digits and the task of counting them, which requires more cognitive effort. The test measures the ability to suppress automatic responses (response inhibition) and focus attention on the task at hand [78].The main indicator in this test is the average percentage of correct answers.Go/no-go tasks require participants to respond to one type of stimulus (the “go” stimulus) but inhibit their response to another type of stimulus (the “no-go” stimulus). This task assesses the ability to inhibit automatic responses and cognitive flexibility, as well as response inhibition and working memory [58]. The tasks in the main block were arranged in a pseudorandomized order while following the rule that No-go trials were preceded by two or five Go trials. The main block of trials was preceded by ten practice trials, consisting of two No-go and eight Go trials. As a primary measure of Go/No-go task performance, the attention control was the percentage of correct responses to Go trials after No-go trials.
- Furthermore, both prior to and following the GI and mental task sessions, the study participants were given questionnaires developed by the research team. These questionnaires encompassed various measures, including participants’ self-reported levels of stress and relaxation on a 10-point scale, and enabled the identification of emotions experienced by the participants before and after the GI and mental tasks.
3.2. Experimental Facilities
3.3. The Cohort
3.4. Inclusion and Exclusion Criteria
3.5. The 14th min Choice Justification
- An exponential family of probability distribution (this means it is not necessary for a normal distribution);
- A linear predictor ;
- A link function g such that
3.6. The Final Cohort
4. Statistical Analysis of the Data
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stevens, C.; Bavelier, D. The role of selective attention on academic foundations: A cognitive neuroscience perspective. Dev. Cogn. Neurosci. 2012, 2, S30–S48. [Google Scholar] [CrossRef]
- Johnson, A.; Proctor, R.W. Attention: Theory and Practice; Sage: Thousand Oaks, CA, USA, 2004. [Google Scholar]
- Trautwein, F.M.; Kanske, P.; Böckler, A.; Singer, T. Differential benefits of mental training types for attention, compassion, and theory of mind. Cognition 2020, 194, 104039. [Google Scholar] [CrossRef]
- Peterson, R.L.; Boada, R.; McGrath, L.M.; Willcutt, E.G.; Olson, R.K.; Pennington, B.F. Cognitive prediction of reading, math, and attention: Shared and unique influences. J. Learn. Disabil. 2017, 50, 408–421. [Google Scholar] [CrossRef]
- Arrington, C.N.; Kulesz, P.A.; Francis, D.J.; Fletcher, J.M.; Barnes, M.A. The contribution of attentional control and working memory to reading comprehension and decoding. Sci. Stud. Read. 2014, 18, 325–346. [Google Scholar] [CrossRef]
- Titz, C.; Karbach, J. Working memory and executive functions: Effects of training on academic achievement. Psychol. Res. 2014, 78, 852–868. [Google Scholar] [CrossRef]
- King, E.; Haar, J.M. Mindfulness and job performance: A study of Australian leaders. Asia Pac. J. Hum. Resour. 2017, 55, 298–319. [Google Scholar] [CrossRef]
- Gao, C.; Zhao, X.; Li, T. Effects of indoor VOCs from paint on human brain activities during working memory tasks: An electroencephalogram study. Indoor Air 2022, 32, e13062. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Y.; Lu, Q.; Feng, H.; Tang, R.; Posner, M.I. Short-term meditation increases blood flow in anterior cingulate cortex and insula. Front. Psychol. 2015, 6, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidan, F.; Johnson, S.K.; Diamond, B.J.; David, Z.; Goolkasian, P. Mindfulness meditation improves cognition: Evidence of brief mental training. Conscious. Cogn. 2010, 19, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Ruedy, N.E.; Schweitzer, M.E. In the moment: The effect of mindfulness on ethical decision making. J. Bus. Ethics 2010, 95, 73–87. [Google Scholar] [CrossRef]
- Chiesa, A.; Serretti, A. A systematic review of neurobiological and clinical features of mindfulness meditations. Psychol. Med. 2010, 40, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Malinowski, P. Neural mechanisms of attentional control in mindfulness meditation. Front. Neurosci. 2013, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Gallant, S.N. Mindfulness meditation practice and executive functioning: Breaking down the benefit. Conscious. Cogn. 2016, 40, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.; Calati, R.; Serretti, A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin. Psychol. Rev. 2011, 31, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Cahn, B.R.; Polich, J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol. Bull. 2006, 132, 180. [Google Scholar] [CrossRef]
- Raffone, A.; Srinivasan, N. Mindfulness and cognitive functions: Toward a unifying neurocognitive framework. Mindfulness 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Achterberg, J.; Healing, I.I. Shamanism and Modern Medicine; Shambhala: Boulder, CO, USA, 1985. [Google Scholar]
- Kwekkeboom, K.L. Outcome expectancy and success with cognitive-behavioral interventions: The case of guided imagery. Oncol. Nurs. Forum 2001, 28, 1125–1132. [Google Scholar]
- Cooley, S.J.; Williams, S.E.; Burns, V.E.; Cumming, J. Methodological variations in guided imagery interventions using movement imagery scripts in sport: A systematic review. J. Imag. Res. Sport Phys. Act. 2013, 8, 13–34. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, K.R. Mind As Healer, Mind As Slayer: A Holistic Approach to Preventing Stress Disorders; Dell: New York, NY, USA, 1977. [Google Scholar]
- Simonton, O.C.; Matthews-Simonton, S.; Sparks, T.F. Psychological intervention in the treatment of cancer. Psychosomatics 1980, 21, 226–233. [Google Scholar] [CrossRef]
- Vines, S.W. Relaxation with guided imagery: Effects on employees’ psychological distress and health seeking behaviors. AAOHN J. 1994, 42, 206–213. [Google Scholar] [CrossRef]
- Hart, J. Guided imagery. Altern. Complement. Ther. 2008, 14, 295–299. [Google Scholar] [CrossRef]
- Achterberg, J. Imagery in Healing: Shamanism and Modern Science; New Science Library: Boston, MA, USA, 1985. [Google Scholar]
- Wachelka, D.; Katz, R.C. Reducing test anxiety and improving academic self-esteem in high school and college students with learning disabilities. J. Behav. Ther. Exp. Psychiatry 1999, 30, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Gruzelier, J.; Smith, F.; Nagy, A.; Henderson, D. Cellular and humoral immunity, mood and exam stress: The influences of self-hypnosis and personality predictors. Int. J. Psychophysiol. 2001, 42, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Ayres, J.; Hopf, T.S. Visualization: A means of reducing speech anxiety. Commun. Educ. 1985, 34, 318–323. [Google Scholar] [CrossRef]
- Speck, B.J. The effect of guided imagery upon first semester nursing students performing their first injections. J. Nurs. Educ. 1990, 29, 346–350. [Google Scholar] [CrossRef]
- Stephens, R.L. Imagery: A treatment for nursing student anxiety. J. Nurs. Educ. 1992, 31, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Rees, B.L. Effect of relaxation with guided imagery on anxiety, depression, and self-esteem in primiparas. J. Holist. Nurs. 1995, 13, 255–267. [Google Scholar] [CrossRef]
- Thomas, K.M.; Sethares, K.A. Is guided imagery effective in reducing pain and anxiety in the postoperative total joint arthroplasty patient? Orthop. Nurs. 2010, 29, 393–399. [Google Scholar] [CrossRef]
- Kapoor, V.G.; Bray, M.A.; Kehle, T.J. School-based intervention: Relaxation and guided imagery for students with asthma and anxiety disorder. Can. J. Sch. Psychol. 2010, 25, 311–327. [Google Scholar] [CrossRef]
- Serra, D.; Parris, C.R.; Carper, E.; Homel, P.; Fleishman, S.B.; Harrison, L.B.; Chadha, M. Outcomes of guided imagery in patients receiving radiation therapy for breast cancer. Clin. J. Oncol. Nurs. 2012, 16. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, J.; Brymer, E. Nature-based guided imagery as an intervention for state anxiety. Front. Psychol. 2018, 9, 1858. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Pandey, S. Spiritual Healing and Rajyoga Meditation in Schizo-Affective Disorder, Depressive Type—A Case Report. Int. J. Sci. Res. 2015, 4, SUB151884. [Google Scholar]
- Krishnakumar, D.; Hamblin, M.R.; Lakshmanan, S. Meditation and yoga can modulate brain mechanisms that affect behavior and anxiety—A modern scientific perspective. Anc. Sci. 2015, 2, 13. [Google Scholar] [CrossRef]
- Stapleton, P.; Dispenza, J.; McGill, S.; Sabot, D.; Peach, M.; Raynor, D. Large effects of brief meditation intervention on EEG spectra in meditation novices. IBRO Rep. 2020, 9, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Bohlmeijer, E.; Prenger, R.; Taal, E.; Cuijpers, P. The effects of mindfulness-based stress reduction therapy on mental health of adults with a chronic medical disease: A meta-analysis. J. Psychosom. Res. 2010, 68, 539–544. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Hölzel, B.K.; Posner, M.I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef]
- Fox, A.S.; Kalin, N.H. A translational neuroscience approach to understanding the development of social anxiety disorder and its pathophysiology. Am. J. Psychiatry 2014, 171, 1162–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perich, T.; Manicavasagar, V.; Mitchell, P.B.; Ball, J.R. The association between meditation practice and treatment outcome in mindfulness-based cognitive therapy for bipolar disorder. Behav. Res. Ther. 2013, 51, 338–343. [Google Scholar] [CrossRef]
- Shapiro, S.L. The integration of mindfulness and psychology. J. Clin. Psychol. 2009, 65, 555–560. [Google Scholar] [CrossRef]
- Vøllestad, J.; Nielsen, M.B.; Nielsen, G.H. Mindfulness-and acceptance-based interventions for anxiety disorders: A systematic review and meta-analysis. Br. J. Clin. Psychol. 2012, 51, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.M.G.; Crane, C.; Barnhofer, T.; Brennan, K.; Duggan, D.S.; Fennell, M.J.; Hackmann, A.; Krusche, A.; Muse, K.; Von Rohr, I.R.; et al. Mindfulness-based cognitive therapy for preventing relapse in recurrent depression: A randomized dismantling trial. J. Consult. Clin. Psychol. 2014, 82, 275. [Google Scholar] [CrossRef]
- Hebert, R.; Lehmann, D.; Tan, G.; Travis, F.; Arenander, A. Enhanced EEG alpha time-domain phase synchrony during Transcendental Meditation: Implications for cortical integration theory. Signal Process. 2005, 85, 2213–2232. [Google Scholar] [CrossRef]
- Atchley, R.; Klee, D.; Memmott, T.; Goodrich, E.; Wahbeh, H.; Oken, B. Event-related potential correlates of mindfulness meditation competence. Neuroscience 2016, 320, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phneah, S.W.; Nisar, H. EEG-based alpha neurofeedback training for mood enhancement. Australas. Phys. Eng. Sci. Med. 2017, 40, 325–336. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Sulaiman, N.; Taib, M.N.; Lias, S.; Murat, Z.H.; Aris, S.A.M.; Mustafa, M.; Rashid, N.A. Development of EEG-based stress index. In Proceedings of the 2012 International Conference on Biomedical Engineering (ICoBE), Penang, Malaysia, 27–28 February 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 461–466. [Google Scholar]
- Scholz, U.; La Marca, R.; Nater, U.M.; Aberle, I.; Ehlert, U.; Hornung, R.; Martin, M.; Kliegel, M. Go no-go performance under psychosocial stress: Beneficial effects of implementation intentions. Neurobiol. Learn. Mem. 2009, 91, 89–92. [Google Scholar] [CrossRef]
- Zoefel, B.; Huster, R.J.; Herrmann, C.S. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 2011, 54, 1427–1431. [Google Scholar] [CrossRef] [PubMed]
- Friedman, N.P.; Robbins, T.W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 2022, 47, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, C.M. Half a century of research on the Stroop effect: An integrative review. Psychol. Bull. 1991, 109, 163. [Google Scholar] [CrossRef]
- Hellmuth, J.; Mirsky, J.; Heuer, H.; Matlin, A.; Jafari, A.; Garbutt, S.; Widmeyer, M.; Berhel, A.; Sinha, L.; Miller, B.; et al. Multicenter validation of a bedside antisaccade task as a measure of executive function. Neurology 2012, 78, 1824–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meule, A. Reporting and interpreting task performance in go/no-go affective shifting tasks. Front. Psychol. 2017, 8, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.; Woollacott, M. Effects of level of meditation experience on attentional focus: Is the efficiency of executive or orientation networks improved? J. Altern. Complement. Med. 2007, 13, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.; Malinowski, P. Meditation, mindfulness and cognitive flexibility. Conscious. Cogn. 2009, 18, 176–186. [Google Scholar] [CrossRef]
- Bing-Canar, H.; Pizzuto, J.; Compton, R.J. Mindfulness-of-breathing exercise modulates EEG alpha activity during cognitive performance. Psychophysiology 2016, 53, 1366–1376. [Google Scholar] [CrossRef]
- Fan, Y.; Tang, Y.Y.; Tang, R.; Posner, M.I. Short term integrative meditation improves resting alpha activity and stroop performance. Appl. Psychophysiol. Biofeedback 2014, 39, 213–217. [Google Scholar] [CrossRef]
- Kumari, V.; Antonova, E.; Wright, B.; Hamid, A.; Hernandez, E.M.; Schmechtig, A.; Ettinger, U. The mindful eye: Smooth pursuit and saccadic eye movements in meditators and non-meditators. Conscious. Cogn. 2017, 48, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Keith, J.R.; Blackwood, M.E.; Mathew, R.T.; Lecci, L.B. Self-reported mindful attention and awareness, go/no-go response-time variability, and attention-deficit hyperactivity disorder. Mindfulness 2017, 8, 765–774. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The benefits of being present: Mindfulness and its role in psychological well-being. J. Personal. Soc. Psychol. 2003, 84, 822. [Google Scholar] [CrossRef] [Green Version]
- Feldman, G.; Hayes, A.; Kumar, S.; Greeson, J.; Laurenceau, J.P. Mindfulness and emotion regulation: The development and initial validation of the Cognitive and Affective Mindfulness Scale-Revised (CAMS-R). J. Psychopathol. Behav. Assess. 2007, 29, 177–190. [Google Scholar] [CrossRef]
- Mrazek, M.D.; Mooneyham, B.W.; Schooler, J.W. Insights from quiet minds: The converging fields of mindfulness and mind-wandering. In Meditation—Neuroscientific Approaches and Philosophical Implications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 227–241. [Google Scholar]
- Schmertz, S.K. The relation between self-report mindfulness and performance on tasks of attention. J. Psychopathol. Behav. Assess. 2006, 31, 60–66. [Google Scholar] [CrossRef]
- Holas, P.; Jankowski, T. A cognitive perspective on mindfulness. Int. J. Psychol. 2013, 48, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Baranski, M.F. The Effects of Mindfulness Meditation on Executive Functions, Moderated by Trait Anxiety; Kent State University: Kent, OH, USA, 2020. [Google Scholar]
- Hudetz, J.A.; Hudetz, A.G.; Klayman, J. Relationship between relaxation by guided imagery and performance of working memory. Psychol. Rep. 2000, 86, 15–20. [Google Scholar] [CrossRef]
- Hudetz, J.A.; Hudetz, A.G.; Reddy, D.M. Effect of relaxation on working memory and the Bispectral Index of the EEG. Psychol. Rep. 2004, 95, 53–70. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Carlson, L.E.; Astin, J.A.; Freedman, B. Mechanisms of mindfulness. J. Clin. Psychol. 2006, 62, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Angelidis, A.; Solis, E.; Lautenbach, F.; van der Does, W.; Putman, P. I’m going to fail! Acute cognitive performance anxiety increases threat-interference and impairs WM performance. PLoS ONE 2019, 14, e0210824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eysenck, M.W.; Derakshan, N.; Santos, R.; Calvo, M.G. Anxiety and cognitive performance: Attentional control theory. Emotion 2007, 7, 336. [Google Scholar] [CrossRef] [Green Version]
- Shi, R.; Sharpe, L.; Abbott, M. A meta-analysis of the relationship between anxiety and attentional control. Clin. Psychol. Rev. 2019, 72, 101754. [Google Scholar] [CrossRef]
- Spielberger, C.D. State-Trait Anxiety Inventory for Adults; APA PsycTests: Washington, DC, USA, 1983. [Google Scholar]
- Huang, F.Y.; Hsu, A.L.; Hsu, L.M.; Tsai, J.S.; Huang, C.M.; Chao, Y.P.; Hwang, T.J.; Wu, C.W. Mindfulness improves emotion regulation and executive control on bereaved individuals: An fMRI study. Front. Hum. Neurosci. 2019, 12, 541. [Google Scholar] [CrossRef] [Green Version]
- Tousignant, O.H.; Taylor, N.D.; Suvak, M.K.; Fireman, G.D. Effects of rumination and worry on sleep. Behav. Ther. 2019, 50, 558–570. [Google Scholar] [CrossRef]
- Kawiak, A.; Wójcik, G.M.; Kwasniewicz, L.; Schneider, P.; Wierzbicki, A. Look Who’s Talking: Modeling Decision Making Based on Source Credibility. In Proceedings of the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 327–341. [Google Scholar]
- Kwaśniewicz, Ł.; Wójcik, G.M.; Kawiak, A.; Schneider, P.; Wierzbicki, A. How You Say or What You Say? Neural Activity in Message Credibility Evaluation. In Proceedings of the International Conference on Computational Science, Amsterdam, The Netherlands, 3–5 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 312–326. [Google Scholar]
- Schneider, P.; Wójcik, G.M.; Kawiak, A.; Kwasniewicz, L.; Wierzbicki, A. Modeling and Comparing Brain Processes in Message and Earned Source Credibility Evaluation. Front. Hum. Neurosci. 2022, 16, 808382. [Google Scholar] [CrossRef]
- EGI. Net Station Waveforms Tools Technical Manual; Electrical Geodesics, Inc.: Eugene, OR, USA, 2006. [Google Scholar]
- Wojcik, G.M.; Shriki, O.; Kwasniewicz, L.; Kawiak, A.; Ben-Horin, Y.; Furman, S.; Wróbel, K.; Bartosik, B.; Panas, E. Investigating brain cortical activity in patients with post-COVID-19 brain fog. Front. Neurosci. 2023, 17, 1019778. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Takizawa, Y.; Zheng-Yan, J.; Yamaguchi, N. Gender differences in quantitative EEG at rest and during photic stimulation in normal young adults. Clin. Electroencephalogr. 1994, 25, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Cantillo-Negrete, J.; Carino-Escobar, R.I.; Carrillo-Mora, P.; Flores-Rodríguez, T.B.; Elias-Vinas, D.; Gutierrez-Martinez, J. Gender differences in quantitative electroencephalogram during a simple hand movement task in young adults. Rev. Investig. Clin. 2017, 68, 245–255. [Google Scholar]
- McCullagh, P. Generalized Linear Models; Routledge: Hoboken, NJ, USA, 2019. [Google Scholar]
- Dyląg, K.A.; Wieczorek, W.; Bauer, W.; Walecki, P.; Bando, B.; Martinek, R.; Kawala-Sterniuk, A. Pilot Study on Analysis of Electroencephalography Signals from Children with FASD with the Implementation of Naive Bayesian Classifiers. Sensors 2021, 22, 103. [Google Scholar] [CrossRef] [PubMed]
- Mikołajewska, E.; Mikołajewski, D. Non-invasive EEG-based brain–computer interfaces in patients with disorders of consciousness. Mil. Med. Res. 2014, 1, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salankar, N.; Qaisar, S.M.; Pławiak, P.; Tadeusiewicz, R.; Hammad, M. EEG based alcoholism detection by oscillatory modes decomposition second order difference plots and machine learning. Biocybern. Biomed. Eng. 2022, 42, 173–186. [Google Scholar] [CrossRef]
- Wojcik, G.M.; Masiak, J.; Kawiak, A.; Schneider, P.; Kwasniewicz, L.; Polak, N.; Gajos-Balinska, A. New protocol for quantitative analysis of brain cortex electroencephalographic activity in patients with psychiatric disorders. Front. Neuroinform. 2018, 12, 27. [Google Scholar] [CrossRef]
- Tadeusiewicz, R. Neural networks as a tool for modeling of biological systems. Bio-Algorithms Med-Syst. 2015, 11, 135–144. [Google Scholar] [CrossRef]
- Ważny, M.; Wojcik, G.M. Shifting spatial attention—Numerical model of Posner experiment. Neurocomputing 2014, 135, 139–144. [Google Scholar] [CrossRef]
- Wojcik, G.M.; Garcia-Lazaro, J.A. Analysis of the neural hypercolumn in parallel pcsim simulations. Procedia Comput. Sci. 2010, 1, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, G.M.; Masiak, J.; Kawiak, A.; Kwasniewicz, L.; Schneider, P.; Polak, N.; Gajos-Balinska, A. Mapping the human brain in frequency band analysis of brain cortex electroencephalographic activity for selected psychiatric disorders. Front. Neuroinform. 2018, 12, 73. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, G.M.; Masiak, J.; Kawiak, A.T.; Kwasniewicz, L.K.; Schneider, P.; Postepski, F.; Gajos-Balinska, A. Analysis of decision-making process using methods of quantitative electroencephalography and machine learning tools. Front. Neuroinform. 2019, 13, 73. [Google Scholar] [CrossRef]
- de Melo, M.B.; Daldegan-Bueno, D.; Menezes Oliveira, M.G.; de Souza, A.L. Beyond ANOVA and MANOVA for repeated measures: Advantages of generalized estimated equations and generalized linear mixed models and its use in neuroscience research. Eur. J. Neurosci. 2022, 56, 6089–6098. [Google Scholar] [CrossRef]
- Zemla, K.; Wojcik, G.M.; Postepski, F.; Wróbel, K.; Kawiak, A.; Sedek, G. Modeling of Brain Cortical Activity during Relaxation and Mental Workload Tasks Based on EEG Signal Collection. Appl. Sci. 2023, 13, 4472. [Google Scholar] [CrossRef]
- Gruzelier, J. A review of the impact of hypnosis, relaxation, guided imagery and individual differences on aspects of immunity and health. Stress 2002, 5, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Cardaciotto, L.; Herbert, J.D.; Forman, E.M.; Moitra, E.; Farrow, V. The assessment of present-moment awareness and acceptance: The Philadelphia Mindfulness Scale. Assessment 2008, 15, 204–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathee, S.; Bhatia, D.; Punia, V.; Singh, R. Peak alpha frequency in relation to cognitive performance. J. Neurosci. Rural. Pract. 2020, 11, 416–419. [Google Scholar] [CrossRef]
- Koczkodaj, W.W. Statistically accurate evidence of improved error rate by pairwise comparisons. Percept. Mot. Ski. 1996, 82, 43–48. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Z.; Wu, Z.; Mu, C.; Li, T. Graph Convolution Neural Network based End-to-end Channel Selection and Classification for Motor Imagery Brain-computer Interfaces. IEEE Trans. Ind. Inform. 2022, 1–10. [Google Scholar] [CrossRef]
- Li, T.; Duan, M.; Li, K.; Yu, G.; Ruan, Z. Bedside monitoring of patients with shock using a portable spatially-resolved near-infrared spectroscopy. Biomed. Opt. Express 2015, 6, 3431–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Lin, Y.; Shang, Y.; He, L.; Huang, C.; Szabunio, M.; Yu, G. Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter. Sci. Rep. 2013, 3, 1358. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Wu, Z.; Hu, Y.; Li, T. Golden subject is everyone: A subject transfer neural network for motor imagery-based brain computer interfaces. Neural Netw. 2022, 151, 111–120. [Google Scholar] [CrossRef] [PubMed]
Guided Imagery Group (N = 20) | Mental Task Group (N = 28) | Statistical Test | |||||
---|---|---|---|---|---|---|---|
Measures | M | SD | M | SD | F | p | |
Anxiety measures (pre-test) | |||||||
STAI Trait | 45.00 | 7.91 | 45.93 | 33,117 | 0.12 | n.s. | n.s. |
STAI State | 39.85 | 9.98 | 40.29 | 31,959 | 0.15 | n.s. | n.s. |
Motivational and affective measures | |||||||
Helplessness (pre-test) | 18.00 | 5.48 | 17.3 | 4.94 | 0.41 | n.s. | n.s. |
Stress reduction (before–after) | 2.25 | 5.27 | 1.00 | 1.52 | 5.12 | 0.03 | 0.102 |
Relaxation increase (after–before) | 2.25 | 5.17 | 1.15 | 2.67 | 2.28 | 0.14 | 0.048 |
Guided Imagery Group (N = 20) | Mental Task Group (N = 28) | Statistical Test | |||||
---|---|---|---|---|---|---|---|
Measures | M | SD | M | SD | F | p | |
Brain waves | |||||||
Alpha power (14th min) | 0.25 | 0.13 | 0.17 | 0.12 | 5.23 | 0.023 | 0.105 |
Beta power (14th min) | 0.08 | 0.03 | 0.07 | 0.03 | 1.23 | n.s. | n.s. |
Attention control | |||||||
Numerical Stroop task (% errors) | 1.35 | 1.92 | 3.24 | 2.51 | 8.06 | 0.007 | 0.146 |
Anti-saccade task (% errors) | 1.87 | 3.16 | 4.42 | 3.16 | 7.31 | 0.010 | 0.135 |
Go/No-go task (% errors) | 7.33 | 6.72 | 8.85 | 5.93 | 0.70 | n.s. | n.s. |
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Alpha power 14 min | - | ||||||
2. Num. Stroop (% errors) | ** | - | |||||
3. Anti-Saccade (% errors) | ** | ** | - | ||||
4. Stress Reduction | 0.29 * | - | |||||
5. Helplessness | 0.24 | 0.29 * | - | ||||
6. STAI Trait | 0.10 | 0.27 | 0.10 | 0.48 ** | - | ||
7. STAI State | 0.14 | 0.01 | 0.12 | 0.21 | 0.37 ** | 0.74 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zemla, K.; Sedek, G.; Wróbel, K.; Postepski, F.; Wojcik, G.M. Investigating the Impact of Guided Imagery on Stress, Brain Functions, and Attention: A Randomized Trial. Sensors 2023, 23, 6210. https://doi.org/10.3390/s23136210
Zemla K, Sedek G, Wróbel K, Postepski F, Wojcik GM. Investigating the Impact of Guided Imagery on Stress, Brain Functions, and Attention: A Randomized Trial. Sensors. 2023; 23(13):6210. https://doi.org/10.3390/s23136210
Chicago/Turabian StyleZemla, Katarzyna, Grzegorz Sedek, Krzysztof Wróbel, Filip Postepski, and Grzegorz M. Wojcik. 2023. "Investigating the Impact of Guided Imagery on Stress, Brain Functions, and Attention: A Randomized Trial" Sensors 23, no. 13: 6210. https://doi.org/10.3390/s23136210
APA StyleZemla, K., Sedek, G., Wróbel, K., Postepski, F., & Wojcik, G. M. (2023). Investigating the Impact of Guided Imagery on Stress, Brain Functions, and Attention: A Randomized Trial. Sensors, 23(13), 6210. https://doi.org/10.3390/s23136210