Validation of Estimators for Weight-Bearing and Shoulder Joint Loads Using Instrumented Crutches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Experimental Protocol
2.3. Partial Weight-Bearing Estimation and Validation
2.4. Shoulder Reaction Regressions
3. Results
3.1. Partial Weight-Bearing
3.2. Shoulder Joint Reactions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youm, T.; Maurer, S.G.; Stuchin, S.A. Postoperative Management After Total Hip and Knee Arthroplasty. J. Arthroplast. 2005, 20, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Abdalbary, S.A. Partial weight bearing in hip fracture rehabilitation. Futur. Sci. OA 2018, 4, FSO254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laufer, Y. The use of walking aids in the rehabilitation of stroke patients. Rev. Clin. Gerontol. 2004, 14, 137–144. [Google Scholar] [CrossRef]
- Khan, F.R.; Vijesh, P.V.; Rahool, S.; Radha, A.A.; Sukumaran, S.; Kurupath, R. Physiotherapy Practice in Stroke Rehabilitation: A Cross-Sectional Survey of Physiotherapists in the State of Kerala, India. Top. Stroke Rehabil. 2012, 19, 405–410. [Google Scholar] [CrossRef]
- Raaben, M.; Holtslag, H.R.; Leenen, L.P.; Augustine, R.; Blokhuis, T.J. Real-time visual biofeedback during weight bearing improves therapy compliance in patients following lower extremity fractures. Gait Posture 2018, 59, 206–210. [Google Scholar] [CrossRef]
- Eickhoff, A.M.; Cintean, R.; Fiedler, C.; Gebhard, F.; Schütze, K.; Richter, P.H. Analysis of partial weight bearing after surgical treatment in patients with injuries of the lower extremity. Arch. Orthop. Trauma Surg. 2022, 142, 77–81. [Google Scholar] [CrossRef]
- Tveit, M.; Ka, J.; Kä, J. Low Effectiveness of Prescribed Partial Weight Bearing Continuous recording of vertical loads using a new pressure-sensitive insole. J. Rehabil. Med. 2001, 33, 42–46. [Google Scholar]
- Vasarhelyi, A.; Baumert, T.; Fritsch, C.; Hopfenmüller, W.; Gradl, G.; Mittlmeier, T. Partial weight bearing after surgery for fractures of the lower extremity—Is it achievable? Gait Posture 2006, 23, 99–105. [Google Scholar] [CrossRef]
- Jain, N.B.; Higgins, L.D.; Katz, J.N.; Garshick, E. Association of Shoulder Pain with the Use of Mobility Devices in Persons with Chronic Spinal Cord Injury. PM&R 2010, 2, 896–900. [Google Scholar] [CrossRef] [Green Version]
- Requejo, P.S.; Wahl, D.P.; Bontrager, E.L.; Newsam, C.J.; Gronley, J.K.; Mulroy, S.J.; Perry, J. Upper extremity kinetics during Lofstrand crutch-assisted gait. Med. Eng. Phys. 2005, 27, 19–29. [Google Scholar] [CrossRef]
- Crenna, F.; Lancini, M.; Ghidelli, M.; Rossi, G.B.; Berardengo, M. Biomechanics in crutch assisted walking. Acta IMEKO 2022, 11, 1–5. [Google Scholar] [CrossRef]
- Westerhoff, P.; Graichen, F.; Bender, A.; Halder, A.; Beier, A.; Rohlmann, A.; Bergmann, G. In vivo measurement of shoulder joint loads during walking with crutches. Clin. Biomech. 2012, 27, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Crenna, F.; Rossi, G.B.; Palazzo, A. Measurement of human movement under metrological controlled conditions. Acta IMEKO 2015, 4, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Howell, A.M.; Kobayashi, T.; Hayes, H.A.; Foreman, K.B.; Bamberg, S.J.M. Kinetic Gait Analysis Using a Low-Cost Insole. IEEE Trans. Biomed. Eng. 2013, 60, 3284–3290. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.V.; McNames, J.; Mancini, M.; Carlson-Kuhta, P.; Spain, R.I.; Nutt, J.G.; El-Gohary, M.; Curtze, C.; Horak, F.B. Laboratory versus daily life gait characteristics in patients with multiple sclerosis, Parkinson’s disease, and matched controls. J. Neuroeng. Rehabilit. 2020, 17, 159. [Google Scholar] [CrossRef]
- Baldazzi, G.; Masciavè, G.K.; Gusai, E.; Zedda, A.; Spanu, S.; Sulas, E.; Raffo, L.; Pani, D. A Plantar Pressure Biofeedback M-Health System for Stroke Patients; IEEE: New York, NY, USA, 2020. [Google Scholar]
- Chen, J.; Dai, Y.; Grimaldi, N.S.; Lin, J.; Hu, B.; Wu, Y.; Gao, S. Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Adv. Mater. Technol. 2022, 7, 2100566. [Google Scholar] [CrossRef]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef]
- Pasinetti, S.; Nuzzi, C.; Covre, N.; Luchetti, A.; Maule, L.; Serpelloni, M.; Lancini, M. Validation of Marker-Less System for the Assessment of Upper Joints Reaction Forces in Exoskeleton Users. Sensors 2020, 20, 3899. [Google Scholar] [CrossRef]
- Merrett, G.V.; A Ettabib, M.; Peters, C.; Hallett, G.; White, N.M. Augmenting forearm crutches with wireless sensors for lower limb rehabilitation. Meas. Sci. Technol. 2010, 21, 124008. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-Moriana, G.; Sevillano, J.L.; Ridao-Fernández, C. A Compact Forearm Crutch Based on Force Sensors for Aided Gait: Reliability and Validity. Sensors 2016, 16, 925. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.F.; Napoli, D.; Agrawal, S.K.; Zanotto, D. Smart Crutches: Towards Instrumented Crutches for Rehabilitation and Exoskeletons-Assisted Walking. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; pp. 193–198. [Google Scholar] [CrossRef]
- Sardini, E.; Serpelloni, M.; Lancini, M. Wireless Instrumented Crutches for Force and Movement Measurements for Gait Monitoring. IEEE Trans. Instrum. Meas. 2015, 64, 3369–3379. [Google Scholar] [CrossRef]
- Lancini, M.; Serpelloni, M.; Pasinetti, S. Instrumented crutches to measure the internal forces acting on upper limbs in powered exoskeleton users. In Proceedings of the 2015 6th International Workshop on Advances in Sensors and Interfaces (IWASI), Gallipoli, Italy, 18–19 June 2015; pp. 175–180. [Google Scholar] [CrossRef]
- Ghidelli, M.; Nuzzi, C.; Pasinetti, S.; Lancini, M. Onboard gait detection crutches for gait rehabilitation. In Proceedings of the Podium and Poster Presentations at the International Conference for Virtual Reality 2022, Rotterdam, The Netherlands, 26–28 July 2022. [Google Scholar] [CrossRef]
- Lancini, M.; Serpelloni, M.; Pasinetti, S.; Guanziroli, E. Healthcare sensor system exploiting instrumented crutches for force measurement during assisted gait of exoskeleton users. IEEE Sens. J. 2016, 16, 2579738. [Google Scholar] [CrossRef]
- Tamburella, F.; Lorusso, M.; Tagliamonte, N.L.; Bentivoglio, F.; Bigioni, A.; Pisotta, I.; Lancini, M.; Pasinetti, S.; Ghidelli, M.; Masciullo, M.; et al. Load Auditory Feedback Boosts Crutch Usage in Subjects with Central Nervous System Lesions: A Pilot Study. Front. Neurol. 2021, 12, 700472. [Google Scholar] [CrossRef] [PubMed]
- Lancini, M.; Pasinetti, S.; Ghidelli, M.; Padovani, P.; Pinto-Fernández, D.; Del-Ama, A.J.; Torricelli, D. A Workaround for Recruitment Issues in Preliminary WR Studies: Audio Feedback and Instrumented Crutches to Train Test Subjects. In Wearable Robotics: Challenges and Trends; Springer: Berlin/Heidelberg, Germany, 2021; pp. 627–631. [Google Scholar] [CrossRef]
- Biomechanic of Gait and Treatment of Abnormal Gait Patterns|PM&R KnowledgeNow. Available online: https://now.aapmr.org/biomechanic-of-gait-and-treatment-of-abnormal-gait-patterns/ (accessed on 4 July 2023).
- Pasinetti, S.; Fornaser, A.; Lancini, M.; De Cecco, M.; Sansoni, G. Assisted Gait Phase Estimation Through an Embedded Depth Camera Using Modified Random Forest Algorithm Classification. IEEE Sens. J. 2020, 20, 3343–3355. [Google Scholar] [CrossRef]
- Quigley, M.; Gerkey, B.; Conley, K.; Faust, J.; Foote, T.; Leibs, J.; Berger, E.; Wheeler, R.; Ng, A. ROS: An Open-Source Robot Operating System. Available online: http://stair.stanford.edu (accessed on 29 April 2023).
- Kainz, H.; Graham, D.; Edwards, J.; Walsh, H.P.; Maine, S.; Boyd, R.N.; Lloyd, D.G.; Modenese, L.; Carty, C.P. Reliability of four models for clinical gait analysis. Gait Posture 2017, 54, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghidelli, M.; Massardi, S.; Foletti, L.; Gonzalez, A.C.; Lancini, M. Validation of a ROS-Based Synchronization System for Biomechanics Gait Labs. In Proceedings of the 2022 IEEE International Symposium on Measurements & Networking (M&N), Padua, Italy, 18–20 July 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Noreau, L.; Richards, C.L.; Comeau, F.; Tardif, D. Biomechanical analysis of swing-through gait in paraplegic and non-disabled individuals. J. Biomech. 1995, 28, 689–700. [Google Scholar] [CrossRef]
- Youdas, J.W.; Kotajarvi, B.J.; Padgett, D.J.; Kaufman, K.R. Partial weight-bearing gait using conventional assistive devices. Arch. Phys. Med. Rehabil. 2005, 86, 394–398. [Google Scholar] [CrossRef]
- Rasouli, F.; Reed, K.B. Walking assistance using crutches: A state of the art review. J. Biomech. 2020, 98, 109489. [Google Scholar] [CrossRef]
- Crenna, F.; Rossi, G.B.; Berardengo, M. A Global Approach to Assessing Uncertainty in Biomechanical Inverse Dynamic Analysis: Mathematical Model and Experimental Validation. IEEE Trans. Instrum. Meas. 2021, 70, 1006809. [Google Scholar] [CrossRef]
- Rossi, G.B.; Crenna, F.; Palazzo, A. A Proposal for a More User-Oriented GUM. IEEE Trans. Instrum. Meas. 2019, 68, 1343–1352. [Google Scholar] [CrossRef]
Instrumentation | Details |
---|---|
Instrumented crutches |
|
Optoelectronic motion capture system (Vicon Motion Systems Ltd., Yarnton, UK) |
|
LockLab Control Box (Vicon Motion Systems Ltd., Yarnton, UK) |
|
BTS force platforms (BTS S.p.A., Garbagnate Milanese, Italy) |
|
Crutches Trigger box |
|
Min. Number of Valid Tests | Conditions |
---|---|
1× | Static test on the first force plate |
1× | Static test on the second force plate |
1× | Vicon functional calibration |
3× | Normal gait, self-selected speed, no crutches |
3× | Normal gait, slow (50 steps/min), no crutches |
3× | Normal gait, fast (90 steps/min), no crutches |
3× | 2-point contralateral, slow (50 steps/min), 20%BW |
3× | 2-point contralateral, slow (50 steps/min), 40%BW |
3× | 2-point contralateral, fast (90 steps/min), 20%BW |
3× | 2-point contralateral, fast (90 steps/min), 40%BW |
3× | 3-point PWB, slow (50 steps/min), 20%BW |
3× | 3-point PWB, slow (50 steps/min), 40%BW |
3× | 3-point PWB, fast (90 steps/min), 20%BW |
3× | 3-point PWB, fast (90 steps/min), 40%BW |
Parameter | Sum of Squares | Degrees of Freedom | Mean Squares | F | p-Value |
---|---|---|---|---|---|
Cadence | 4242 | 1 | 4242 | 264 | <0.05 |
Crutch load | 345 | 1 | 345 | 21 | <0.05 |
Pattern | 13 | 1 | 13 | 1 | 0.36 |
Subject | 860 | 5 | 172 | 11 | <0.05 |
Support | 811 | 1 | 811 | 50 | <0.05 |
Error | 4113 | 256 | 16 | ||
Total | 10,624 | 265 |
Parameter | Sum of Squares | Degrees of Freedom | Mean Squares | F | p-Value |
---|---|---|---|---|---|
Cadence | 1346 | 1 | 1346 | 46 | <0.05 |
Crutch load | 361 | 1 | 361 | 12 | <0.05 |
Pattern | 37 | 1 | 37 | 1 | 0.26 |
Subject | 1336 | 5 | 267 | 9 | <0.05 |
Support | 10,177 | 1 | 10,177 | 348 | <0.05 |
Error | 7471 | 256 | 29 | ||
Total | 20,961 | 265 |
Parameters | Correlation with Shoulder Vertical Force | Correlation with Shoulder Mediolateral Torque | ||
---|---|---|---|---|
RMS | Peaks | RMS | Peaks | |
Crutch force RMS | 1.00 | 0.96 | 0.74 | 0.74 |
Crutch force RMS * height | 1.00 | 0.96 | 0.73 | 0.73 |
Crutch force RMS * height2 | 0.99 | 0.95 | 0.71 | 0.71 |
Crutch force peak | 0.93 | 0.98 | 0.68 | 0.74 |
Crutch force peak * height | 0.93 | 0.98 | 0.67 | 0.73 |
Crutch force peak * height2 | 0.93 | 0.98 | 0.66 | 0.71 |
Crutch force RMS * BMI | 0.86 | 0.86 | 0.54 | 0.56 |
Crutch force RMS * body mass | 0.86 | 0.86 | 0.52 | 0.54 |
Crutch force peak * BMI | 0.80 | 0.87 | 0.49 | 0.56 |
… | … | … | … | … |
Shoulder Joint Force | RMSE (%BW) | R2 | Dataset |
---|---|---|---|
RMS | 0.45 | 1.00 | Identification |
0.42 | 1.00 | Validation | |
Peak | 1.5 | 0.97 | Identification |
1.4 | 0.98 | Validation |
Shoulder Joint Torque | RMSE (%BW*H) | R2 | Dataset |
---|---|---|---|
RMS | 0.34 | 0.61 | Identification |
0.32 | 0.68 | Validation | |
Peak | 0.55 | 0.61 | Identification |
0.52 | 0.69 | Validation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghidelli, M.; Nuzzi, C.; Crenna, F.; Lancini, M. Validation of Estimators for Weight-Bearing and Shoulder Joint Loads Using Instrumented Crutches. Sensors 2023, 23, 6213. https://doi.org/10.3390/s23136213
Ghidelli M, Nuzzi C, Crenna F, Lancini M. Validation of Estimators for Weight-Bearing and Shoulder Joint Loads Using Instrumented Crutches. Sensors. 2023; 23(13):6213. https://doi.org/10.3390/s23136213
Chicago/Turabian StyleGhidelli, Marco, Cristina Nuzzi, Francesco Crenna, and Matteo Lancini. 2023. "Validation of Estimators for Weight-Bearing and Shoulder Joint Loads Using Instrumented Crutches" Sensors 23, no. 13: 6213. https://doi.org/10.3390/s23136213
APA StyleGhidelli, M., Nuzzi, C., Crenna, F., & Lancini, M. (2023). Validation of Estimators for Weight-Bearing and Shoulder Joint Loads Using Instrumented Crutches. Sensors, 23(13), 6213. https://doi.org/10.3390/s23136213