Assessing Quadriceps Muscle Contraction Using a Novel Surface Mechanomyography Sensor during Two Neuromuscular Control Screening Tasks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Assessment Activities
2.3.1. Calibration
2.3.2. Maximum Voluntary Isometric Contraction (MVIC)
2.3.3. Bilateral Deep Squat
2.3.4. Repeated Unilateral Partial Squat
2.4. Data Processing
2.5. Data Analysis
3. Results
3.1. Timing of Muscle Contraction
3.2. Detection of Peak Quadriceps Contraction
4. Discussion
4.1. Overview of Findings
4.2. Timing Literature (Discussion of Contraction Duration Timing Results—Hypothesis 1)
4.3. Discussion of Time Point Detection Results (Concentric and Eccentric—Hypothesis 2)
4.4. Reliability Testing
4.5. Comparison to EMG
4.6. Comparison to TMG
4.7. Potential Uses in the Future
4.8. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, M.T.; Ryan, A.M.; Vallance, S.R.; Dias-Dougan, A.; Dugdale, J.H.; Hunter, A.M.; Hamilton, D.L.; Macgregor, L.J. Tensiomyography Derived Parameters Reflect Skeletal Muscle Architectural Adaptations Following 6-Weeks of Lower Body Resistance Training. Front. Physiol. 2019, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Đorđević, S.; Rozman, S.; Zupet, P.; Dopsaj, M.; Maffulli, N. Tensiomyography Allows to Discriminate between Injured and Non-Injured Biceps Femoris Muscle. Biology 2022, 11, 746. [Google Scholar] [CrossRef] [PubMed]
- Basmajian, J.V.; De Luca, C.J. Muscles Alive: Their Functions Revealed by Electromyography, 5th ed.; Williams & Wilkins: Baltimore, MD, USA, 1985; ISBN 068300414X. [Google Scholar]
- Esposito, D.; Andreozzi, E.; Fratini, A.; Gargiulo, G.D.; Savino, S.; Niola, V.; Bifulco, P. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography. Sensors 2018, 18, 2553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konrad, P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography; Noraxon Inc.: Scottsdale, AZ, USA, 2005; pp. 26–33. [Google Scholar]
- Amrutha, N.; Arul, V.H. A Review on Noises in EMG Signal and its Removal. Int. J. Sci. Res. Publ. 2017, 7, 23–27. [Google Scholar]
- Slater, L.V.; Hart, J.M. Muscle Activation Patterns During Different Squat Techniques. J. Strength Cond. Res. 2017, 31, 667–676. [Google Scholar] [CrossRef]
- Korak, J.A.; Bruininks, B.D.; Paquette, M.R. The Influence of Normalization Technique on Between-Muscle Activation during a Back-Squat. Int. J. Exerc. Sci. 2020, 13, 1098–1107. [Google Scholar]
- Krishnan, C.; Allen, E.J.; Williams, G.N. Effect of knee position on quadriceps muscle force steadiness and activation strategies. Muscle Nerve 2011, 43, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Sundaraj, K.; Ahmad, R.B.; Ahamed, N.U. Mechanomyogram for Muscle Function Assessment: A Review. PLoS ONE 2013, 8, e58902. [Google Scholar] [CrossRef]
- Cè, E.; Rampichini, S.; Esposito, F. Novel insights into skeletal muscle function by mechanomyography: From the laboratory to the field. Sport Sci. Health 2015, 11, 1–28. [Google Scholar] [CrossRef]
- Madeleine, P. On functional motor adaptations: From the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck-shoulder region. Acta Physiol. 2010, 199, 1–46. [Google Scholar] [CrossRef]
- Madeleine, P.; Ge, H.-Y.; Jaskólska, A.; Farina, D.; Jaskolski, A.; Arendt-Nielsen, L. Spectral moments of mechanomyographic signals recorded with accelerometer and microphone during sustained fatiguing contractions. Med. Biol. Eng. Comput. 2006, 44, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Seidl, L.; Tosovic, D.; Brown, J.M. Test-Retest Reliability and Reproducibility of Laser- versus Contact-Displacement Sensors in Mechanomyography: Implications for Musculoskeletal Research. J. Appl. Biomech. 2017, 33, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Cè, E.; Longo, S.; Limonta, E.; Coratella, G.; Rampichini, S.; Esposito, F. Peripheral fatigue: New mechanistic insights from recent technologies. Eur. J. Appl. Physiol. 2020, 120, 17–39. [Google Scholar] [CrossRef]
- Watakabe, M.; Mita, K.; Akataki, K.; Itoh, Y. Mechanical behaviour of condenser microphone in mechanomyography. Med. Biol. Eng. Comput. 2001, 39, 195–201. [Google Scholar] [CrossRef]
- Macgregor, L.J.; Ditroilo, M.; Smith, I.J.; Fairweather, M.M.; Hunter, A.M. Reduced radial excursion of the gastrocnemius media- lis muscle aftter electrically elicited fatigue. In Proceedings of the American College of Sports Medicine Annual Meeting, San Francisco, CA, USA, 27 May 2020. [Google Scholar]
- Linderman, S.E.; Scarborough, D.M.; Stein, H.S.; Aspenleiter, R.T.; Berkson, E.M. Novel Surface Mechanomyography Sensor Assessment of Hamstrings Contraction During A Neuromuscular Control Screening Task. Med. Sci. Sport. Exerc. 2020, 52, 39–40. [Google Scholar] [CrossRef]
- Delsys. Technical Note 101: EMG Sensor Placement. Available online: https://www.delsys.com/downloads/TECHNICALNOTE/101-emg-sensor-placement.pdf (accessed on 30 December 2020).
- West, A.M.; Scarborough, D.M.; McInnis, K.C.; Oh, L.S. Strength and Motion in the Shoulder, Elbow, and Hip in Softball Windmill Pitchers. PMR 2019, 11, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- McMahon, L.M.; Burdett, R.G.; Whitney, S.L. Effects of Muscle Group and Placement Site on Reliability of Hand-Held Dynamometry Strength Measurements. J. Orthop. Sport. Phys. Ther. 1992, 15, 236–242. [Google Scholar] [CrossRef]
- Sinacore, J.A.; Evans, A.M.; Lynch, B.N.; Joreitz, R.E.; Irrgang, J.J.; Lynch, A.D. Diagnostic Accuracy of Handheld Dynamometry and 1-Repetition-Maximum Tests for Identifying Meaningful Quadriceps Strength Asymmetries. J. Orthop. Sport. Phys. Ther. 2017, 47, 97–107. [Google Scholar] [CrossRef]
- Solnik, S.; Rider, P.; Steinweg, K.; DeVita, P.; Hortobágyi, T. Teager–Kaiser energy operator signal conditioning improves EMG onset detection. Eur. J. Appl. Physiol. 2010, 110, 489–498. [Google Scholar] [CrossRef] [Green Version]
- Muyor, J.M.; Martín-Fuentes, I.; Rodríguez-Ridao, D.; Antequera-Vique, J.A. Electromyographic activity in the gluteus medius, gluteus maximus, biceps femoris, vastus lateralis, vastus medialis and rectus femoris during the Monopodal Squat, Forward Lunge and Lateral Step-Up exercises. PLoS ONE 2020, 15, e0230841. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163, Correction in J. Chiropr. Med. 2017, 16, 346. [Google Scholar] [CrossRef] [Green Version]
- Nazmi, N.; Abdul Rahman, M.A.; Yamamoto, S.; Ahmad, S.A.; Zamzuri, H.; Mazlan, S.A. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors 2016, 16, 1304. [Google Scholar] [CrossRef] [Green Version]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and Measurement Error of Tensiomyography to Assess Mechanical Muscle Function: A Systematic Review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Komi, P.V. Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 42, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Limonta, E.; Cè, E. Passive stretching effects on electromechanical delay and time course of recovery in human skeletal muscle: New insights from an electromyographic and mechanomyographic combined approach. Eur. J. Appl. Physiol. 2011, 111, 485–495. [Google Scholar] [CrossRef]
- Sasaki, K.; Sasaki, T.; Ishii, N. Acceleration and Force Reveal Different Mechanisms of Electromechanical Delay. Med. Sci. Sport. Exerc. 2011, 43, 1200–1206. [Google Scholar] [CrossRef]
- Esposito, F.; Cè, E.; Rampichini, S.; Limonta, E.; Venturelli, M.; Monti, E.; Bet, L.; Fossati, B.; Meola, G. Electromechanical delay components during skeletal muscle contraction and relaxation in patients with myotonic dystrophy type 1. Neuromuscul. Disord. 2016, 26, 60–72. [Google Scholar] [CrossRef]
- Hannah, R.; Minshull, C.; Smith, S.L.; Folland, J.P. Longer Electromechanical Delay Impairs Hamstrings Explosive Force versus Quadriceps. Med. Sci. Sport. Exerc. 2014, 46, 963–972. [Google Scholar] [CrossRef] [PubMed]
- Escamilla, R.F. Knee biomechanics of the dynamic squat exercise. Med. Sci. Sport. Exerc. 2001, 33, 127–141. [Google Scholar] [CrossRef]
- Ruas, C.V.; Pinto, R.S.; Haff, G.G.; Lima, C.D.; Brown, L.E. Effects of Different Combinations of Concentric and Eccentric Resistance Training Programs on Traditional and Alternative Hamstrings-to-Quadriceps Ratios. Sports 2019, 7, 221. [Google Scholar] [CrossRef] [Green Version]
- Heywood, S.; Pua, Y.H.; McClelland, J.; Geigle, P.; Rahmann, A.; Bower, K.; Clark, R. Low-cost electromyography—Validation against a commercial system using both manual and automated activation timing thresholds. J. Electromyogr. Kinesiol. 2018, 42, 74–80. [Google Scholar] [CrossRef]
- Piva, S.R.; Fitzgerald, K.; Irrgang, J.J.; Jones, S.; Hando, B.R.; Browder, D.A.; Childs, J.D. Reliability of measures of impairments associated with patellofemoral pain syndrome. BMC Musculoskelet. Disord. 2006, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Rabin, A.; Kozol, Z. Measures of Range of Motion and Strength Among Healthy Women with Differing Quality of Lower Extremity Movement During the Lateral Step-Down Test. J. Orthop. Sport. Phys. Ther. 2010, 40, 792–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Kato, T.; Ogino, Y.; Yamagata, M.; Ichihashi, N. Verification of reliability and validity of motion analysis systems during bilateral squat using human pose tracking algorithm. Gait Posture 2020, 80, 62–67. [Google Scholar] [CrossRef]
- Barroso, R.; Roschel, H.; Ugrinowitsch, C.; Araújo, R.; Nosaka, K.; Tricoli, V. Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise. Appl. Physiol. Nutr. Metab. 2010, 35, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rodríguez, S.; Alentorn-Geli, E.; Tous-Fajardo, J.; Samuelsson, K.; Marín, M.; Álvarez-Díaz, P.; Cugat, R. Is tensiomyography a useful assessment tool in sports medicine? Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 3980–3981. [Google Scholar] [CrossRef] [PubMed]
- de Paula Simola, P.A.; Harms, N.; Raeder, C.; Kellmann, M.; Meyer, T.; Pfeiffer, R.; Ferrauti, A. Assessment of Neuromuscular Function After Different Strength Training Protocols Using Tensiomyography. J. Strength Cond. Res. 2015, 29, 1339–1348. [Google Scholar] [CrossRef]
- Alentorn-Geli, E.; Alvarez-Diaz, P.; Ramon, S.; Marin, M.; Steinbacher, G.; Boffa, J.J.; Cuscó, X.; Ballester, J.; Cugat, R. Assessment of neuromuscular risk factors for anterior cruciate ligament injury through tensiomyography in male soccer players. Knee Surg. Sport. Traumatol. Arthrosc. 2015, 23, 2508–2513. [Google Scholar] [CrossRef]
- Alvarez-Diaz, P.; Alentorn-Geli, E.; Ramon, S.; Marin, M.; Steinbacher, G.; Boffa, J.J.; Cuscó, X.; Ares, O.; Ballester, J.; Cugat, R. Effects of anterior cruciate ligament injury on neuromuscular tensiomyographic characteristics of the lower extremity in competitive male soccer players. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 2264–2270. [Google Scholar] [CrossRef]
- García-García, O.; Serrano-Gómez, V.; Cuba-Dorado, A. Evolution of the lateral symmetry of the lower limbs of professional footballers during the season. In Proceedings of the IV NSCA International Conference, Murcia, Spain, 26–28 June 2014. [Google Scholar]
Sensor | Descent Phase (s) | p | Ascent Phase (s) | p |
---|---|---|---|---|
EMG | 1.250 ± 0.470 | 0.414 | 1.302 ± 0.631 | 0.462 |
sMMG | 1.317 ± 0.429 | 1.243 ± 0.238 |
Sensor | Partial Squat 2 | p | Partial Squat 3 | p | Partial Squat 4 | p |
---|---|---|---|---|---|---|
EMG | 1.748 ± 0.584 | 0.17 | 1.769 ± 0.622 | 0.369 | 1.759 ± 0.576 | 0.945 |
sMMG | 1.784 ± 0.618 | 1.796 ± 0.639 | 1.761 ± 0.609 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linderman, S.E.; Scarborough, D.M.; Aspenleiter, R.; Stein, H.S.; Berkson, E.M. Assessing Quadriceps Muscle Contraction Using a Novel Surface Mechanomyography Sensor during Two Neuromuscular Control Screening Tasks. Sensors 2023, 23, 6031. https://doi.org/10.3390/s23136031
Linderman SE, Scarborough DM, Aspenleiter R, Stein HS, Berkson EM. Assessing Quadriceps Muscle Contraction Using a Novel Surface Mechanomyography Sensor during Two Neuromuscular Control Screening Tasks. Sensors. 2023; 23(13):6031. https://doi.org/10.3390/s23136031
Chicago/Turabian StyleLinderman, Shannon E., Donna Moxley Scarborough, Ryan Aspenleiter, Hannah S. Stein, and Eric M. Berkson. 2023. "Assessing Quadriceps Muscle Contraction Using a Novel Surface Mechanomyography Sensor during Two Neuromuscular Control Screening Tasks" Sensors 23, no. 13: 6031. https://doi.org/10.3390/s23136031
APA StyleLinderman, S. E., Scarborough, D. M., Aspenleiter, R., Stein, H. S., & Berkson, E. M. (2023). Assessing Quadriceps Muscle Contraction Using a Novel Surface Mechanomyography Sensor during Two Neuromuscular Control Screening Tasks. Sensors, 23(13), 6031. https://doi.org/10.3390/s23136031