A Fast Algorithm for Intra-Frame Versatile Video Coding Based on Edge Features
Abstract
:1. Introduction
- (1)
- Using edge information as the basis for selecting partition modes leads to more accurate results compared to using texture complexity as the basis for selecting partition modes.
- (2)
- We propose a method for calculating the feature value of the edge, which is exploited to predict the partition pattern.
- (3)
- The partition information and texture complexity of adjacent CUs are utilized to determine whether to terminate the current CU partition, resulting in more accurate results.
2. Related Work
3. Proposed Method
3.1. Principle
3.2. Edge and Edge Feature Extraction
3.3. Early Termination of Simple-Texture Regions
3.4. Flowchart of the Proposed Algorithm
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wiegand, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 2012, 22, 1649–1668. [Google Scholar] [CrossRef]
- Hamidouche, W.; Biatek, T.; Abdoli, M. Versatile video coding standard: A review from coding tools to consumers deployment. IEEE Consum. Electron. Mag. 2022, 11, 10–24. [Google Scholar] [CrossRef]
- Tissier, A.; Mrecat, A.; Amestoy, T. Complexity reduction opportunities in the future VVC intra encoder. In Proceedings of the International Workshop on Multimedia signal Proeessing, Kuala Lumpur, Malaysia, 27–29 September 2019; IEEE: New York, NY, USA, 2019; pp. 27–29. [Google Scholar]
- Pakdamaf, F.; Adelimanesh, M.; Gabbouj, M. Complexity analysis of next-generation VVC encoding and decoding. In Proceedings of the Internationail Conference on Lmage Processing, Abu Dhabi, United Arab Emirates, 25–28 October 2020; IEEE: New York, NY, USA, 2020; pp. 25–28. [Google Scholar]
- Fu, T.; Zhang, H.; Mu, F. Fast CU partition algorithm for H. 266/VVC intra-frame coding. In Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; IEEE: New York, NY, USA, 2019; pp. 55–60. [Google Scholar]
- Li, T.; Xu, M.; Tang, R. Deep QTMT: A deep learning approach for fast QTMT-based CU partition of intra-mode VVC. IEEE Trans. Image Process. 2021, 30, 5377–5390. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Guo, R.; Jiang, B. Fast CU decision-making algorithm based on DenseNet network for VVC. IEEE Access 2021, 9, 119289–119297. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Huang, L. Fast CU partition and intra mode decision method for H. 266/VVC. IEEE Access 2020, 8, 117539–117550. [Google Scholar] [CrossRef]
- Yang, H.; Shen, L.; Dong, X. Low-complexity CTU partition structure decision and fast intra mode decision for versatile video coding. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 1668–1682. [Google Scholar] [CrossRef]
- Wu, S.; Shi, J.; Chen, Z. HG-FCN: Hierarchical Grid Fully Convolutional Network for Fast VVC Intra Coding. IEEE Trans. Circuits Syst. Video Technol. 2022, 8, 5638–5649. [Google Scholar] [CrossRef]
- Saldanha, M.; Sanchez, G.; Marcon, C. Learning-based complexity reduction scheme for VVC intra-frame prediction. In Proceedings of the 2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany, 5–8 December 2021; IEEE: New York, NY, USA, 2021; pp. 1–5. [Google Scholar]
- Tissier, A.; Hamidouche, W.; Vanne, J. CNN oriented complexity reduction of VVC intra encoder. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; IEEE: New York, NY, USA, 2020; pp. 3139–3143. [Google Scholar]
- Hoangvan, X.; NguyenQuang, S.; DinhBao, M. Fast QTMT for H. 266/VVC intra prediction using early-terminated hierarchical CNN model. In Proceedings of the 2021 International Conference on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 14–16 October 2021; IEEE: New York, NY, USA, 2021; pp. 195–200. [Google Scholar]
- Amna, M.; Imen, W.; Fatma Ezahra, S. Fast multi-type tree partitioning for versatile video coding using machine learning. Signal Image Video Process. 2023, 17, 67–74. [Google Scholar] [CrossRef]
- Taabane, I.; Menard, D.; Mansouri, A. Machine learning based fast QTMTT partitioning strategy for VVenC encoder in intra coding. Electronics 2023, 12, 1338. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Lu, C.R.; Chen, M.J. Visual Perception Based Intra Coding Algorithm for H. 266/VVC. Electronics 2023, 12, 2079. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Jing, X. A fast Multi-Type-Tree split decision algorithm of intra coding unit in VVC. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain, 15–17 June 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Song, Y.; Zeng, B.; Wang, M. An efficient low-complexity block partition scheme for VVC intra coding. J. Real-Time Image Process. 2022, 19, 161–172. [Google Scholar] [CrossRef]
- Li, Q.; Meng, H.; Li, Y. Texture-based fast QTMT partition algorithm in VVC intra coding. Signal Image Video Process. 2022, 17, 1581–1589. [Google Scholar] [CrossRef]
- Shang, X.; Li, G.; Zhao, X. Low complexity inter coding scheme for Versatile Video Coding (VVC). J. Vis. Commun. Image Represent. 2023, 90, 103683. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Jiang, B. Fast CU partition decision method based on texture characteristics for H. 266/VVC. IEEE Access 2020, 8, 203516–203524. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, H.; Katto, J. A fast QTMT partition decision strategy for VVC intra prediction. IEEE Access 2020, 8, 107900–107911. [Google Scholar] [CrossRef]
- Shang, X.; Li, G.; Zhao, X. Fast CU size decision algorithm for VVC intra coding. Multimed. Tools Appl. 2023, 82, 28301–28322. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Q. An Efficient CU Partition Algorithm for VVC Intra Coding. J. Phys. Conf. Ser. 2021, 1815, 012006. [Google Scholar] [CrossRef]
- Bossen, F.; Boycej, J.; Suehring, K. JVET common test conditions and software reference configurations. In Proceedings of the Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 11th Meeting, San Diego, CA, USA, 10–20 April 2018; pp. 1–6. [Google Scholar]
- Gao, W.; Zhang, X.; Yang, L. An improved Sobel edge detection. In Proceedings of the International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July 2010; IEEE: New York, NY, USA, 2010; Volume 5, pp. 67–71. [Google Scholar]
- Kong, W.; Zhang, H.; Zhao, W. Research on Canny Edge Feature Detection Technology of Color Image Based on Vector Properties. In Proceedings of the 2021 IEEE 15th International Conference on Electronic Measurement & Instruments (ICEMI), Nanjing, China, 29–31 October 2021. [Google Scholar]
- Feulefack, P.A. The logarithmic Schrödinger operator and associated Dirichlet problems. J. Math. Anal. Appl. 2023, 517, 126656. [Google Scholar] [CrossRef]
- Ulupinar, F.; Medioni, G. Refining edges detected by a LoG operator. Comput. Vis. Graph. Image Process. 1990, 51, 275–298. [Google Scholar] [CrossRef]
- Shu, Z.-J.; Peng, Z.-J.; Jiang, G.-Y.; Chen, F.; Yuan, B.-S. Fast intra partition and mode prediction for equirectangular projection 360-degree video coding. IET Image Process. 2023, 17, 558–569. [Google Scholar]
Encoding Sequence | Proportion of Vertical Division (%) | Proportion of Horizontal Division (%) |
---|---|---|
(a) FoodMarket4 | ||
efv > 1 | 33 | 67 |
efv < 1 | 65 | 35 |
efv > 1.2 | 21 | 79 |
efv < 0.8 | 83 | 17 |
(b) Kimono1 | ||
efv > 1 | 30 | 70 |
efv < 1 | 67 | 34 |
efv > 1.2 | 19 | 81 |
efv < 0.8 | 75 | 25 |
(c) BasketballPass | ||
efv > 1 | 21 | 79 |
efv < 1 | 72 | 28 |
efv > 1.2 | 19 | 81 |
efv < 0.8 | 75 | 25 |
(d) BQMall | ||
efv > 1 | 38 | 62 |
efv < 1 | 71 | 29 |
efv > 1.2 | 25 | 75 |
efv < 0.8 | 70 | 30 |
(e) BQSquare | ||
efv > 1 | 38 | 62 |
efv < 1 | 71 | 29 |
efv > 1.2 | 25 | 75 |
efv < 0.8 | 70 | 30 |
Class | Sequence | Reference [9] | Reference [15] | Reference [16] | Algorithm in This Paper | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tl1 = 0.6, Th1 = 1.5 | Tl1 = 0.8, Th1 = 1.3 | ||||||||||
BDBR (%) | Ts (%) | BDBR (%) | Ts (%) | BDBR (%) | Ts (%) | BDBR (%) | Ts (%) | BDBR (%) | Ts (%) | ||
A1 | Tango2 | 1.47 | 52.23 | 0.74 | 37.01 | 1.59 | 51.85 | 0.40 | 32.96 | 1.54 | 56.97 |
Campfire | 2.65 | 64.74 | 0.66 | 34.05 | 1.61 | 50.11 | 0.45 | 33.45 | 1.63 | 57.96 | |
CatRobatl | 1.77 | 47.63 | 0.54 | 29.91 | 1.55 | 50.59 | 0.32 | 29.77 | 1.91 | 58.41 | |
A2 | DatLightRoat2 | 2.11 | 52.01 | 0.71 | 32.12 | 1.77 | 47.92 | 0.26 | 31.45 | 1.36 | 55.25 |
ParkRunning3 | 1.32 | 50.12 | 0.68 | 32.11 | 1.99 | 54.33 | 0.27 | 29.45 | 1.51 | 49.07 | |
MarkPlace | 1.91 | 55.21 | 0.55 | 34.15 | 1.86 | 48.11 | 0.36 | 33.11 | 1.77 | 55.11 | |
B | Cactus | 1.95 | 51.07 | 0.61 | 30.73 | 1.31 | 44.95 | 0.44 | 31.37 | 1.54 | 51.07 |
BasketballDrive | 2.25 | 62.01 | 0.74 | 34.48 | 1.42 | 48.33 | 0.32 | 35.21 | 1.56 | 49.72 | |
BQTerrace | 2.07 | 54.07 | 0.62 | 30.85 | 1.49 | 46.16 | 0.27 | 34.32 | 1.32 | 50.01 | |
C | RaceHorses | 1.16 | 46.39 | 0.46 | 27.83 | 1.69 | 51.04 | 0.33 | 31.02 | 1.55 | 61.27 |
BasketballDrill | 2.01 | 46.19 | 0.40 | 26.55 | 1.52 | 51.18 | 0.40 | 34.21 | 2.17 | 66.21 | |
BQMall | 2.15 | 53.23 | 0.65 | 33.79 | 1.44 | 46.95 | 0.48 | 30.38 | 1.54 | 56.02 | |
PartyScene | 1.61 | 42.73 | 0.42 | 31.62 | 1.79 | 45.88 | 0.23 | 29.32 | 1.32 | 47.65 | |
D | RaceHorses | 1.33 | 43.75 | 0.55 | 30.17 | 1.24 | 48.33 | 0.24 | 31.41 | 1.49 | 50.21 |
BasketballPass | 2.33 | 43.85 | 0.70 | 30.53 | 1.18 | 45.17 | 0.28 | 31.87 | 1.37 | 45.95 | |
BQSquare | 0.81 | 44.06 | 0.29 | 29.97 | 1.41 | 40.04 | 0.78 | 33.33 | 1.88 | 56.35 | |
BlowingBubbles | 1.31 | 55.16 | 0.43 | 29.34 | 1.86 | 43.86 | 0.66 | 35.22 | 1.57 | 49.15 | |
E | FourPeople | 2.75 | 55.64 | 0.78 | 35.63 | 1.75 | 46.68 | 0.40 | 31.85 | 1.54 | 50.77 |
Johnny | 3.29 | 56.98 | 0.69 | 30.65 | 1.27 | 39.21 | 0.50 | 27.93 | 1.62 | 54.57 | |
KristenAndSara | 2.51 | 57.19 | 0.59 | 31.38 | 1.63 | 49.82 | 0.36 | 32.66 | 1.62 | 45.91 | |
Average | 1.94 | 51.17 | 0.59 | 31.44 | 1.56 | 47.91 | 0.36 | 32.52 | 1.61 | 54.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Shang, X.; Wang, G.; Zhao, H. A Fast Algorithm for Intra-Frame Versatile Video Coding Based on Edge Features. Sensors 2023, 23, 6244. https://doi.org/10.3390/s23136244
Zhao S, Shang X, Wang G, Zhao H. A Fast Algorithm for Intra-Frame Versatile Video Coding Based on Edge Features. Sensors. 2023; 23(13):6244. https://doi.org/10.3390/s23136244
Chicago/Turabian StyleZhao, Shuai, Xiwu Shang, Guozhong Wang, and Haiwu Zhao. 2023. "A Fast Algorithm for Intra-Frame Versatile Video Coding Based on Edge Features" Sensors 23, no. 13: 6244. https://doi.org/10.3390/s23136244
APA StyleZhao, S., Shang, X., Wang, G., & Zhao, H. (2023). A Fast Algorithm for Intra-Frame Versatile Video Coding Based on Edge Features. Sensors, 23(13), 6244. https://doi.org/10.3390/s23136244