Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data
Abstract
:1. Introduction
2. The Experimental Setup
2.1. Experimental Site Parameters and Piping Parameters
2.2. Test Monitoring System
2.2.1. Vibration Test Systems
2.2.2. Strain Testing Systems
2.3. Test Monitoring System
2.3.1. Pipe Sealing and Burial
2.3.2. Strain Gauge Arrangement
2.3.3. Vibration Sensor Arrangement and Installation
2.3.4. Detonation and Testing
3. Test Results and Analysis
3.1. Dynamic Strain Analysis
3.2. Analysis of Vibration Test Results
3.3. Peak Strain, GPPV, and PPVV Correlation Analyses
4. Safety Criterion for Bursting Vibration Power of Buried Pipelines
4.1. Pipe Stress Calculation
4.2. Strength Conditions
4.3. PE Pipe Safety Calibration
5. Conclusions
- (1)
- Through the field test found that the PE pipeline is affected by blasting vibration, the pipeline vibration speed and peak strain are increased with the increase in the amount of explosive, and the peak strain at the nearest location of the pipeline from the blast source is the largest. Among them, the PE pipe is subjected to the largest circumferential compression strain, and circumferential compression damage is more likely to occur in the pipe;
- (2)
- According to the analysis of the test data, it can be seen that the peak vibration velocity of the pipeline, the peak surface vibration velocity, and the peak strain of the pipeline have a high linear correlation to the proportional distance of this test. The peak pipe strain and the peak surface vibration velocity satisfy the relationship . It shows that the use of surface vibration velocity as a technical means of buried pipeline field monitoring is more reliable and simple to operate, and is worth promoting;
- (3)
- Based on the test results, the safety evaluation of a buried, pressurized PE pipeline was carried out by combining the yield strength standard and relevant codes. The safety threshold of additional circumferential stress of pipeline in this experiment was 1.52 MPa, the safety control vibration speed of ground surface was 21.6 cm/s, the minimum value of safety proportional distance was 4.87 m kg−1/3, and the maximum allowable explosive quantity was 1.08 kg. The relevant conclusions can provide reference for the safety operation index of buried PE pipeline under similar working conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; He, L.C.; Wang, K. Field measurement and numerical simulation analysis for influence of blasting excavation on adjacent buried pipelines. China Civ. Eng. J. 2017, 50, 134–140. [Google Scholar] [CrossRef]
- Giannaros, E.; Kotzakolios, T.; Kostopoulos, V. Blast response of composite pipeline structure using finite element techniques. J. Compos. Mater. 2016, 50, 3459–3476. [Google Scholar] [CrossRef]
- Won, J.H.; Kim, M.K.; Kim, G.; Cho, S.H. Blast-induced dynamic response on the interface of a multilayered pipeline. Struct. Infrastruct. Eng. 2014, 10, 80–92. [Google Scholar] [CrossRef]
- Jeon, S.H.; Moon, H.D.; Sim, C.; Ahn, J.-H. Construction stage analysis of a precast concrete buried arch bridge with steel outrig-gers from full-scale field test. Structures 2021, 29, 1671–1689. [Google Scholar] [CrossRef]
- Ha, D.; Abdoun, T.H.; O’Rourke, M.J.; Symans, M.D.; O’Rourke, T.D.; Palmer, M.C.; Stewart, H.E. Centrifuge modeling of earthquake effects on buried high—Density polyethylene (HDPE)pipelines crossing fault zones. J. Geotech. Geoenviron. Eng. 2008, 134, 1501–1515. [Google Scholar] [CrossRef]
- Abdoun, T.H.; Ha, D.; O’rourke, M.J.; Symans, M.D.; O’rourke, T.D.; Palmer, M.C.; Stewart, H.E. Factors influencing the behavior of buried pipelines subjected to earthquake faulting. Soil Dyn. Earthq. Eng. 2009, 29, 415–427. [Google Scholar] [CrossRef]
- Wang, H.T.; Jin, H.; Jia, J.Q.; Chnag, S.T.; Yan, S. Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline. Chin. J. Rock Mech. Eng. 2018, S1, 3332–3339. [Google Scholar] [CrossRef]
- Lee, S.-H.; Eum, K.-Y.; Le, T.H.M.; Park, D.-W. Evaluation on mechanical behavior of asphalt concrete trackbed with slab panel using full-scale static and dynamic load test, Construction and Building. Materials 2021, 276, 122207. [Google Scholar] [CrossRef]
- Sandhu, I.S.; Sharma, A.; Kala, M.B.; Singh, M.; Saroha, D.R.; Thangadurai, M. Comparison of Blast Pressure Mitigation in Rubber Foam in a Blast Wave Gen-erator and Field Test Setups. Combust. Explos. Shock. Waves 2020, 56, 116–123. [Google Scholar] [CrossRef]
- Lou, M.; Ming, H.Q. The dynamic response analysis of submarine suspended pipeline impacted by dropped objects based on LS-DYNA. Mar. Sci. Bull. 2015, 2015, 113–120. [Google Scholar] [CrossRef]
- Francini, R.B.; Baltz, W.N. Blasting and construction vibrations near existing pipelines: What are the appropriate levels? J. Pipeline Eng. 2009, 8, 519–531. [Google Scholar]
- Jiang, N.; Gao, T.; Zhou, C.B.; Luo, X. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel. Tunn. Undergr. Space Technol. 2018, 81, 590–601. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, C.B.; Lu, S.W.; Jiang, N.; Wu, C. Dynamic response characteristic of adjacent buried concrete pipeline subjected to blasting vibration. J. Harbin Inst. Technol. 2017, 46, 79–84. [Google Scholar] [CrossRef]
- Zhu, B.; Jiang, N.; Jia, Y.S.; Zhou, C.; Luo, X.; Wu, T.-Y. Field experiment on blasting vibration effect of underpass gas pipeline. Chin. J. Rock Mech. Eng. 2019, 38, 2582–2592. [Google Scholar] [CrossRef]
- Xia, Y.Q.; Jiang, N.; Yao, Y.K.; Zhou, C.; Luo, X.; Wu, T.-Y. Dynamic responses of a concrete pipeline with bell—And-spigot joints buried in a silty clay layer to blasting seismic waves. Explos. Shock Waves 2020, 40, 70–80. [Google Scholar] [CrossRef]
- Zhong, D.W.; Lu, Z.; Huang, X.; Chen, C.; Si, J.F. Experimental Study on Buried PE Pipeline under Blasting Loads. Blasting 2018, 35, 89. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liang, Z. Buckling failure of a buried pipeline subjected to ground explosions. Process Saf. Environ. Protection. Prot. 2018, 114, 36–47. [Google Scholar] [CrossRef]
- Parviz, M.; Aminnejad, B.; Fiouz, A. Numerical simulation of dynamic response of water in buried pipeline under explosion. KSCE J Civ. Eng. 2017, 21, 2798–2806. [Google Scholar] [CrossRef]
- Wu, K.; Zhang, H.; Liu, X.; Bolati, D.; Liu, G.; Chen, P.; Zhao, Y. Stress and strain analysis of buried PE pipelines subjected to mechanical excavation. Eng. Fail. Anal. 2019, 106, 104–171. [Google Scholar] [CrossRef]
- Xia, Y.; Jiang, N.; Zhou, C.; Luo, X. Safety assessment of upper water pipeline under the blasting vibration induced by Subway tunnel excavation. Eng. Fail. Anal. 2019, 104, 626–642. [Google Scholar] [CrossRef]
- Jose, T.; Vinbi, C.; Salim, F.; Mathew, J.; Raghavu, S. A study of variation in PPV through different types of soil using geophones during blast loading. Int. Res. J. Eng. Technol. 2018, 5, 2086–2088. [Google Scholar]
- Zhong, D.W.; Gong, X.C.; Tu, S.W.; Huang, X. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave. Explos. Shock. 2019, 39, 033102. [Google Scholar] [CrossRef]
- Gong, X.C.; Zhong, D.W.; Si, J.F.; He, L. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves. Explos. Shock. 2020, 40, 10–22. [Google Scholar] [CrossRef]
Serial Number | Sensor Type | Buried Depth/cm | Probe Distance/m | Longitudinal Sound Velocity/(m/s) |
---|---|---|---|---|
1 | Acoustic emission probe | 20 | 0.5 | 853 |
2 | Aqueous medium coupling probe | 60 | 0.5 | 891 |
3 | Aqueous medium coupling probe | 100 | 0.5 | 954 |
Outside Diameter of Pipe DN/mm | Inner Diameter of Pipe ds/mm | Wall Thickness of Pipe δP/mm | Pipe Length LP/m | Young’s Modulus EP/MPa | Poisson’s Ratio μp | Strength Limit σPb/MPa | Elongation Rate ξp/% |
---|---|---|---|---|---|---|---|
315 | 278 | 18.4 | 4.8 | 834.9 | 0.40 | 31.6 | 116 |
Experimental Parameters | Control Variable Range |
---|---|
Explosive quantity (g) | 50, 75, 100, 125, 150, 175, 200 |
Depth of burial of explosion source (m) | 0.5, 1, 1.5, 2 |
Pipeline internal pressure (MPa) | 0, 0.2, 0.4, 0.6 |
Burst core distance (m) | 2.2, 2.7, 3.2 |
Instrument: | TC-4850 Blast Vibrometer |
---|---|
Number of channels | Parallel three-channel |
Display method | Full Chinese LCD display |
Sampling rate | 100 sps~100 Ksps, multi-grade adjustable |
A/D resolution | 16 Bit |
Frequency response range | 0~10 kHz |
Recording method | Continuous trigger recording, can record 128~1000 times |
Recording time | 1~160 s adjustable |
Trigger mode | Internal trigger, external trigger |
Measurement range | Maximum input value 10 V (35 cm/s) |
Trigger Level | 0~10 V (0~35 cm/s) arbitrary adjustable |
Storage Capacity | 1M SRAM, 128 M flash |
Recording accuracy | 0.01 cm/s |
Reading accuracy | 1‰ |
Battery duration | ≥60 h |
Adaptation to the environment | −10~75 °C, 0~95% RH |
Size | 168 mm × 99 mm × 64 mm |
Weight | 1 kg |
Instrument: | UT-3408 Dynamic Strain Tester (Strain Measurement) |
---|---|
Number of channels | 8/16, fully synchronized sampling |
Maximum continuous sampling frequency | 128 KHz |
Dynamic range | 120 dB |
Input method | Each channel in the collector has built-in voltage, charge, IEPE (ICP), and strain input conditioning modules. Each channel can be independently programmed with voltage input, charge input (piezoelectric acceleration sensor), dual constant current source IEPE input (ICP acceleration sensor), and strain input, and each channel input mode can be programmed by software, and the indicator shows the setting status. |
Programmable amplification | Automatic range control and pre-conditioning amplification (1, 2, 5, 10, 20, 50, 10, 200, 500, 1000×) |
Strain measurement range | 0~±100,000 με (2 V bridge voltage) |
Bridge Circuit Resistor | 60~1000 Ω |
Bridge supply voltage (DC) | 1, 2, 3, 6, 10, 12 V |
Error difference | Errors ≤ ±0.2% |
Current | 20 mA max |
Sensitivity factor | k = 2.00 |
Anti-interference energy | Can effectively resist 50 Hz interference |
Resistance Value | Substrate Size | Wire Shed Size | Strain Rate Coefficient | Lead Length | Room Temperature Limit |
---|---|---|---|---|---|
120 ± 1 Ω | 15 × 6 mm | 3 × 3 mm | 2.0 ± 1% | 4 cm | 20,000 UM/M |
Strain Gauges | Peak Strain/10−6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 (g) | 75 (g) | 100 (g) | 125 (g) | 150 (g) | 175 (g) | 200 (g) | ||||||||
PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | |
321H | 46 | 121 | 86 | 151 | 73 | 160 | 99 | 239 | 143 | 318 | 162 | 340 | 182 | 356 |
321Z | 42 | 79 | 56 | 116 | 68 | 90 | 71 | 109 | 75 | 119 | 78 | 114 | 76 | 121 |
323H | 40 | 153 | 62 | 82 | 65 | 210 | 94 | 315 | 129 | 419 | 115 | 345 | 177 | 480 |
323Z | 137 | 103 | 139 | 97 | 141 | 107 | 200 | 154 | 256 | 197 | 178 | 169 | 292 | 232 |
331H | 43 | 109 | 56 | 115 | 64 | 144 | 87 | 202 | 122 | 271 | 136 | 286 | 158 | 296 |
331Z | 95 | 84 | 62 | 79 | 113 | 109 | 137 | 171 | 159 | 216 | 164 | 235 | 159 | 254 |
332H | 121 | 70 | 247 | 247 | 167 | 90 | 263 | 145 | 341 | 259 | 371 | 313 | 442 | 365 |
332Z | 83 | 96 | 216 | 311 | 107 | 139 | 131 | 209 | 193 | 290 | 248 | 341 | 296 | 395 |
333H | 41 | 201 | 174 | 333 | 91 | 279 | 158 | 403 | 271 | 554 | 333 | 614 | 420 | 657 |
333Z | 141 | 95 | 303 | 295 | 192 | 125 | 256 | 180 | 339 | 224 | 370 | 243 | 387 | 256 |
334H | 74 | 90 | 211 | 185 | 105 | 97 | 183 | 105 | 279 | 152 | 329 | 202 | 377 | 274 |
334Z | 117 | 113 | 171 | 220 | 135 | 145 | 171 | 202 | 215 | 243 | 246 | 260 | 239 | 283 |
Strain Gauges | Peak Strain/10−6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 (g) | 75 (g) | 100 (g) | 125 (g) | 150 (g) | 175 (g) | 200 (g) | ||||||||
PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | |
2-1H | 119 | 162 | 83 | 114 | 100 | 121 | 117 | 178 | 198 | 274 | 154 | 244 | 178 | 264 |
2-1Z | 109 | 120 | 80 | 99 | 86 | 116 | 98 | 135 | 142 | 176 | 120 | 162 | 123 | 173 |
2-3H | 83 | 87 | 70 | 80 | 75 | 88 | 83 | 90 | 92 | 138 | 81 | 128 | 90 | 123 |
2-3Z | 112 | 132 | 87 | 129 | 113 | 134 | 115 | 140 | 180 | 169 | 149 | 135 | 170 | 148 |
3-1H | 94 | 104 | 72 | 70 | 87 | 76 | 108 | 93 | 170 | 182 | 147 | 115 | 164 | 143 |
3-1Z | 69 | 87 | 53 | 72 | 58 | 77 | 69 | 80 | 95 | 99 | 78 | 77 | 79 | 87 |
3-2H | 185 | 176 | 114 | 105 | 151 | 127 | 256 | 183 | 477 | 369 | 361 | 224 | 442 | 298 |
3-2Z | 148 | 249 | 94 | 159 | 106 | 201 | 161 | 306 | 326 | 510 | 175 | 399 | 254 | 478 |
3-3H | 133 | 284 | 70 | 187 | 93 | 205 | 163 | 316 | 287 | 502 | 210 | 385 | 245 | 436 |
3-3Z | 219 | 228 | 139 | 153 | 167 | 187 | 243 | 264 | 429 | 397 | 300 | 279 | 357 | 328 |
3-4H | 119 | 122 | 83 | 71 | 100 | 86 | 117 | 128 | 198 | 259 | 154 | 179 | 178 | 217 |
3-4Z | 109 | 200 | 80 | 152 | 86 | 172 | 98 | 199 | 142 | 273 | 120 | 201 | 123 | 234 |
Strain Gauges | Peak Strain/10−6 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 (g) | 75 (g) | 100 (g) | 125 (g) | 150 (g) | 175 (g) | 200 (g) | ||||||||
PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | PTS | PCS | |
2-1H | 21 | 21 | 23 | 24 | 25 | 27 | 39 | 67 | 51 | 128 | 51 | 141 | 68 | 181 |
2-1Z | 20 | 19 | 28 | 24 | 32 | 27 | 48 | 50 | 57 | 61 | 50 | 47 | 60 | 58 |
2-3H | 20 | 18 | 23 | 29 | 23 | 40 | 35 | 88 | 47 | 150 | 42 | 174 | 51 | 213 |
2-3Z | 22 | 29 | 28 | 38 | 34 | 43 | 62 | 68 | 96 | 92 | 107 | 78 | 130 | 104 |
3-1H | 20 | 20 | 24 | 26 | 26 | 28 | 41 | 53 | 52 | 102 | 49 | 120 | 66 | 147 |
3-1Z | 13 | 23 | 21 | 31 | 27 | 35 | 47 | 67 | 68 | 95 | 62 | 84 | 82 | 110 |
3-1X | 5 | 7 | 6 | 6 | 6 | 7 | 15 | 14 | 27 | 25 | 30 | 35 | 38 | 37 |
3-2H | 16 | 11 | 26 | 16 | 29 | 19 | 69 | 41 | 134 | 88 | 194 | 110 | 195 | 135 |
3-2Z | 18 | 24 | 24 | 37 | 24 | 41 | 42 | 76 | 65 | 104 | 76 | 122 | 88 | 122 |
3-3H | 29 | 23 | 34 | 31 | 28 | 37 | 44 | 96 | 71 | 199 | 99 | 289 | 115 | 309 |
3-3Z | 19 | 27 | 29 | 41 | 34 | 44 | 61 | 80 | 97 | 108 | 122 | 106 | 136 | 116 |
3-4H | 18 | 18 | 22 | 28 | 24 | 32 | 43 | 51 | 99 | 69 | 155 | 55 | 165 | 65 |
3-4Z | 19 | 30 | 26 | 41 | 30 | 43 | 51 | 84 | 82 | 121 | 88 | 114 | 103 | 139 |
Projects | PPV (cm·s−1) | ||||||
---|---|---|---|---|---|---|---|
50 g | 75 g | 100 g | 125 g | 150 g | 175 g | 200 g | |
PPVV | 3.5 | 4.7 | 4.4 | 6.2 | 7.8 | 8.3 | 8.7 |
GPPV | 9.0 | 11.9 | 11.4 | 15.2 | 19.4 | 22.9 | 24.7 |
Ratio | 38.9% | 39.9% | 38.7% | 40.6% | 40.3% | 36.1% | 35.4% |
Pipe | Burst Core Distance/m | Material Ultimate Stress/MPa | Additional Circumferential Stress Threshold /MPa | Additional Peak Circumferential Strain/10−6 | Surface Vibration Speed Threshold/(mm/s) | Permissible Surface Vibration Speed/(mm/s) | Minimum Safe Proportional Distance/(m kg−1/3) | Maximum Allowable Explosive Quantity/kg |
---|---|---|---|---|---|---|---|---|
PE | 5 | 8 (MRS) | 1.52 | 1435 | 43.2 | 21.6 | 4.87 | 1.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tu, S.; Zhong, D.; Li, L.; Gong, X.; Tao, H. Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data. Sensors 2023, 23, 6359. https://doi.org/10.3390/s23146359
Tu S, Zhong D, Li L, Gong X, Tao H. Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data. Sensors. 2023; 23(14):6359. https://doi.org/10.3390/s23146359
Chicago/Turabian StyleTu, Shengwu, Dongwang Zhong, Linna Li, Xiangchao Gong, and Haohao Tao. 2023. "Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data" Sensors 23, no. 14: 6359. https://doi.org/10.3390/s23146359
APA StyleTu, S., Zhong, D., Li, L., Gong, X., & Tao, H. (2023). Determination of Blast Vibration Safety Criteria for Buried Polyethylene Pipelines Adjacent to Blast Areas, Using Vibration Velocity and Strain Data. Sensors, 23(14), 6359. https://doi.org/10.3390/s23146359