Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition
Abstract
:1. Introduction
2. Site and Data
3. Methodology
3.1. GNSS Interferometric Reflection Theory
3.2. Signal Decomposition Based on LMD
4. Sea-Level Estimation
5. Results and Discussion
5.1. Decomposition Results of LMD for SNR
5.2. Performance Analysis of Different RH Ranges
5.3. Performance Analysis of Different Elevation Ranges
5.4. Stability of Long-Term Monitoring
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef] [PubMed]
- Melet, A.; Meyssignac, B.; Almar, R.; Le Cozannet, G. Under-estimated wave contribution to coastal sea-level rise. Nat. Clim. Chang. 2018, 8, 234–239. [Google Scholar] [CrossRef]
- Jia, Y.; Xiao, K.; Lin, M.; Zhang, X. Analysis of Global Sea Level Change Based on Multi-Source Data. Remote Sens. 2022, 14, 4854. [Google Scholar] [CrossRef]
- Wang, X.; Niu, Z.; Chen, S.; He, X. A Correction Method of Height Variation Error Based on One SNR Arc Applied in GNSS–IR Sea-Level Retrieval. Remote Sens. 2021, 14, 11. [Google Scholar] [CrossRef]
- Martin-Neira, M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Auber, J.C.; Bibaut, A.; Rigal, J.M. Characterization of Multipath on Land and Sea at GPS Frequencies. In Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1994), Salt Lake City, UT, USA, 20–23 September 1994; pp. 1155–1171. [Google Scholar]
- Soulat, F.; Caparrini, M.; Germain, O.; Lopez-Dekker, P.; Taani, M.; Ruffini, G. Sea state monitoring using coastal GNSS-R. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Alvarez, N.; Camps, A.; Vall-Llossera, M.; Bosch-Lluis, X.; Monerris, A.; Ramos-Perez, I.; Valencia, E.; Marchan-Hernandez, J.F.; Martinez-Fernandez, J.; Baroncini-Turricchia, G.; et al. Land geophysical parameters retrieval using the interference pattern GNSS-R technique. IEEE Trans. Geosci. Remote Sens. 2010, 49, 71–84. [Google Scholar] [CrossRef]
- Rius, A.; Nogués-Correig, O.; Ribó, S.; Cardellach, E.; Oliveras, S.; Valencia, E.; Park, H.; Tarongí, J.M.; Camps, A.; van der Marel, H.; et al. Altimetry with GNSS-R interferometry: First proof of concept experiment. GPS Solut. 2012, 16, 231–241. [Google Scholar] [CrossRef]
- Larson, K.M.; Small, E.E.; Gutmann, E.D.; Bilich, A.L.; Braun, J.J.; Zavorotny, V.U. Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett. 2008, 35, 851–854. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Braun, J.J.; Small, E.E.; Zavorotny, V.U.; Gutmann, E.D.; Bilich, A.L. GPS multipath and its relation to near-surface soil moisture content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 3, 91–99. [Google Scholar] [CrossRef]
- Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. 2009, 36, L17502. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Nievinski, F.G. GPS snow sensing: Results from the EarthScope Plate Boundary Observatory. GPS Solut. 2013, 17, 41–52. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Tu, J.; Liao, M.; Pang, J.; Yu, B.; Li, K.; Xiang, W.; Fu, Y.; Liu, G. A GNSS-IR Method for Retrieving Soil Moisture Content from Integrated Multi-Satellite Data That Accounts for the Impact of Vegetation Moisture Content. Remote Sens. 2021, 13, 2442. [Google Scholar] [CrossRef]
- Liang, Y.; Lai, J.; Ren, C.; Lu, X.; Zhang, Y.; Ding, Q.; Hu, X. GNSS-IR Multisatellite Combination for Soil Moisture Retrieval Based on Wavelet Analysis Considering Detection and Repair of Abnormal Phases. Measurement 2022, 203, 111881. [Google Scholar] [CrossRef]
- Peng, D.; Hill, E.M.; Li, L.; Switzer, A.D.; Larson, K.M. Application of GNSS interferometric reflectometry for detecting storm surges. GPS Solut. 2019, 23, 47. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Lay, T.; Yamazaki, Y.; Cheung, K.F.; Ye, L.; Williams, S.D.; Davis, J.L. Dynamic sea level variation from GNSS: 2020 Shumagin earthquake tsunami resonance and Hurricane Laura. Geophys. Res. Lett. 2021, 48, e2020GL091378. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T.; Wang, L.; Zhang, J.; Peng, J.; Liu, Q. Evaluation of GNSS-IR for retrieving soil moisture and vegetation growth characteristics in wheat farmland. J. Surv. Eng. 2021, 147, 04021009. [Google Scholar] [CrossRef]
- Sui, M.; Chen, K.; Shen, F. Monitoring of Wheat Height Based on Multi-GNSS Reflected Signals. Remote Sens. 2022, 14, 4955. [Google Scholar] [CrossRef]
- Larson, K.M.; Löfgren, J.S.; Haas, R. Coastal sea level measurements using a single geodetic GPS receiver. Adv. Space Res. 2013, 51, 1301–1310. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, J.S.; Haas, R. Sea level measurements using multi-frequency GPS and GLONASS observations. EURASIP J. Adv. Signal Process. 2014, 2014, 50. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Ray, R.D.; Nievinski, F.G.; Freymueller, J.T. The accidental tide gauge: A GPS reflection case study from Kachemak Bay, Alaska. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Williams, S.D.P.; Nievinski, F.G. Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites. J. Geophys. Res. Solid Earth 2017, 122, 2310–2327. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Qian, X.; Wu, X. Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation. Glob. Planet. Chang. 2017, 149, 20–25. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, S. Azimuth selection for sea level measurements using geodetic GPS receivers. Adv. Space Res. 2018, 61, 1546–1557. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Zhang, S. Sea level estimation from SNR data of geodetic receivers using wavelet analysis. GPS Solut. 2019, 23, 6. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Zhang, Q. Evaluation and combination of quad-constellation multi-GNSS multipath reflectometry applied to sea level retrieval. Remote Sens. Environ. 2019, 231, 111229. [Google Scholar] [CrossRef]
- Purnell, D.; Gomez, N.; Chan, N.H.; Strandberg, J.; Holland, D.M.; Hobiger, T. Quantifying the uncertainty in ground-based GNSS-reflectometry sea level measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4419–4428. [Google Scholar] [CrossRef]
- VanderPlas, J.T. Understanding the lomb–scargle periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Bilich, A.; Larson, K.M. Correction published 29 March 2008: Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Sci. 2007, 42, 1–16. [Google Scholar]
- Wang, X.; Zhang, Q.; Zhang, S. Water levels measured with SNR using wavelet decomposition and Lomb–Scargle periodogram. GPS Solut. 2018, 22, 22. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, K.; Liu, Q.; Zhang, C.; Zhang, Q.; Nan, Y. Tide variation monitoring based improved GNSS-MR by empirical mode decomposition. Adv. Space Res. 2019, 63, 3333–3345. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, X.; Liu, W.; Wickert, J.; Jiang, Z.; Haas, R. GNSS-IR Model of Sea Level Height Estimation Combining Variational Mode Decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10405–10414. [Google Scholar] [CrossRef]
- Strandberg, J.; Hobiger, T.; Haas, R. Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Sci. 2016, 51, 1286–1296. [Google Scholar] [CrossRef] [Green Version]
- Vu, P.L.; Ha, M.C.; Frappart, F.; Darrozes, J.; Ramillien, G.; Dufrechou, G.; Gegout, P.; Morichon, D.; Bonneton, P. Identifying 2010 Xynthia storm signature in GNSS-R-based tide records. Remote Sens. 2019, 11, 782. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Ray, R.D.; Williams, S.D.P. A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. J. Atmos. Ocean. Technol. 2017, 34, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Roesler, C.; Larson, K.M. Software tools for GNSS interferometric reflectometry (GNSS-IR). GPS Solut. 2018, 22, 80. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; He, X.; Wang, X.; Zhou, Y.; Xu, X. Study on the quality control for periodogram in the determination of water level using the GNSS-IR technique. Sensors 2019, 19, 4524. [Google Scholar] [CrossRef] [Green Version]
- Larson, K.M.; Small, E.E.; Gutmann, E.; Bilich, A.; Axelrad, P.; Braun, J. Using GPS multipath to measure soil moisture fluctuations: Initial results. GPS Solut. 2008, 12, 173–177. [Google Scholar] [CrossRef]
- Löfgren, J.S.; Haas, R.; Scherneck, H.G. Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. J. Geodyn. 2014, 80, 66–80. [Google Scholar] [CrossRef] [Green Version]
- Lomb Nicholas, R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Ran, Q.; Zhang, B.; Yao, Y.; Yan, X.; Li, J. Editing arcs to improve the capacity of GNSS-IR for soil moisture retrieval in undulating terrains. GPS Solut. 2022, 26, 19. [Google Scholar] [CrossRef]
- Smith, J.S. The local mean decomposition and its application to EEG perception data. J. R. Soc. Interface 2005, 2, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.S.; Yang, S.X.; Ren, D.Q. Spline-based local mean decomposition method for vibration signal. J. Data Acquis. Process. 2009, 24, 82–86. (In Chinese) [Google Scholar]
- Jia, L.; Zhang, Q.; Zheng, X.; Yao, P.; He, X.; Wei, X. The empirical optimal envelope and its application to local mean decomposition. Digit. Signal Process. 2019, 87, 166–177. [Google Scholar] [CrossRef]
- Matz, V.; Ramos, P.M.; Brás, N.B.; Serra, A.C.A. Comparative Evaluation Between Frequency Estimation Algorithms for Power Quality Assesment in DSP Implementation. In Proceedings of the XVIII IMEKO World Congress, Metrology for a Sustainable Development, Department of Electrical and Computer Engineering, Instituto Superior Tcnico, Technical University of Lisbon, Rio de Janeiro, Brazil, 17–22 September 2006. [Google Scholar]
Number of PF Components | Number of SNR Series |
---|---|
3 | 35 |
4 | 256 |
5 | 81 |
6 | 7 |
7 | 1 |
Results | PF1 | PF2 | PF3 | PF4 |
---|---|---|---|---|
0.7252 | 0.9525 | 0.0866 | 1.0000 | |
RMSE (cm) | 47.39 | 17.27 | 109.92 | 108.47 |
MAE (cm) | 28.16 | 11.90 | 84.96 | 108.41 |
Effective Points | 115 | 348 | 62 | 2 |
Methods | RMSE (cm) | MAE (cm) | Effective Points | |
---|---|---|---|---|
LMD | 0.9781 | 11.74 | 9.30 | 363 |
Quadratic fitting | 0.9734 | 13.34 | 10.63 | 364 |
Cubic fitting | 0.9740 | 12.99 | 10.28 | 370 |
Wavelet | 0.9775 | 11.94 | 9.47 | 364 |
EMD | 0.9778 | 11.96 | 9.59 | 365 |
Results | Methods | 4~7 m | 3~8 m | 2~9 m | 0~11 m |
---|---|---|---|---|---|
LMD | 0.9803 | 0.9774 | 0.9774 | 0.9774 | |
Quadratic fitting | 0.9771 | 0.9770 | 0.9764 | 0.9844 | |
Cubic fitting | 0.9765 | 0.9769 | 0.9760 | 0.9791 | |
Wavelet | 0.9811 | 0.9783 | 0.9796 | 0.9770 | |
EMD | 0.9803 | 0.9803 | 0.9803 | 0.9805 | |
RMSE (cm) | LMD | 11.01 | 12.00 | 11.99 | 11.99 |
Quadratic fitting | 12.47 | 12.49 | 12.51 | 12.39 | |
Cubic fitting | 12.29 | 12.22 | 12.28 | 11.22 | |
Wavelet | 10.93 | 11.69 | 11.29 | 12.09 | |
EMD | 11.22 | 11.22 | 11.09 | 11.04 | |
MAE (cm) | LMD | 8.87 | 9.44 | 9.44 | 9.44 |
Quadratic fitting | 10.16 | 10.18 | 10.25 | 10.31 | |
Cubic fitting | 9.89 | 9.87 | 9.93 | 9.26 | |
Wavelet | 8.84 | 9.33 | 9.11 | 9.61 | |
EMD | 9.13 | 9.13 | 9.06 | 9.01 | |
Effective Points | LMD | 356 | 366 | 367 | 367 |
Quadratic fitting | 358 | 359 | 349 | 114 | |
Cubic fitting | 365 | 367 | 353 | 222 | |
Wavelet | 353 | 363 | 354 | 361 | |
EMD | 357 | 359 | 350 | 343 |
Results | Methods | 0.5°~15° | 0.5°~20° | 0.5°~25° | 0.5°~30° | 0.5°~35° |
---|---|---|---|---|---|---|
LMD | 0.9803 | 0.9703 | 0.9669 | 0.9638 | 0.9618 | |
Quadratic fitting | 0.9771 | 0.9635 | 0.9566 | 0.9509 | 0.9489 | |
Cubic fitting | 0.9765 | 0.9680 | 0.9598 | 0.9542 | 0.9510 | |
Wavelet | 0.9811 | 0.9690 | 0.9633 | 0.9562 | 0.9469 | |
EMD | 0.9803 | 0.9686 | 0.9652 | 0.957 | 0.9524 | |
RMSE (cm) | LMD | 11.01 | 13.06 | 13.91 | 14.57 | 15.00 |
Quadratic fitting | 12.47 | 14.51 | 15.78 | 17.38 | 18.79 | |
Cubic fitting | 12.29 | 13.57 | 15.38 | 16.75 | 17.79 | |
Wavelet | 10.93 | 13.58 | 14.81 | 16.21 | 18.36 | |
EMD | 11.22 | 13.53 | 14.46 | 16.18 | 17.67 | |
MAE (cm) | LMD | 8.87 | 10.25 | 11.06 | 11.71 | 12.18 |
Quadratic fitting | 10.16 | 11.44 | 12.48 | 13.61 | 15.10 | |
Cubic fitting | 9.89 | 10.90 | 12.22 | 13.18 | 14.27 | |
Wavelet | 8.84 | 10.82 | 11.90 | 12.98 | 14.40 | |
EMD | 9.13 | 10.72 | 11.72 | 13.00 | 14.24 | |
Effective Points | LMD | 356 | 371 | 373 | 370 | 375 |
Quadratic fitting | 358 | 347 | 327 | 330 | 333 | |
Cubic fitting | 365 | 373 | 368 | 364 | 375 | |
Wavelet | 353 | 376 | 378 | 381 | 390 | |
EMD | 357 | 375 | 374 | 380 | 387 |
Months | Methods | RMSE (cm) | MAE (cm) | Effective Points | |
---|---|---|---|---|---|
Jan | LMD | 0.9900 | 11.88 | 9.46 | 1478 |
Quadratic fitting | 0.9863 | 14.30 | 11.06 | 1488 | |
Cubic fitting | 0.9859 | 14.23 | 10.77 | 1497 | |
Wavelet | 0.9871 | 13.53 | 10.35 | 1528 | |
EMD | 0.9867 | 13.81 | 10.51 | 1522 | |
Feb | LMD | 0.9875 | 12.07 | 9.65 | 1361 |
Quadratic fitting | 0.9872 | 12.50 | 10.06 | 1321 | |
Cubic fitting | 0.9847 | 13.29 | 10.43 | 1379 | |
Wavelet | 0.9880 | 11.74 | 9.51 | 1364 | |
EMD | 0.9881 | 11.64 | 9.45 | 1360 | |
Mar | LMD | 0.9836 | 11.60 | 9.30 | 1577 |
Quadratic fitting | 0.9812 | 12.58 | 10.02 | 1554 | |
Cubic fitting | 0.9806 | 12.58 | 9.92 | 1582 | |
Wavelet | 0.9819 | 12.20 | 9.75 | 1593 | |
EMD | 0.9827 | 11.89 | 9.57 | 1584 | |
Apr | LMD | 0.9815 | 12.28 | 9.85 | 1431 |
Quadratic fitting | 0.9784 | 13.62 | 10.86 | 1430 | |
Cubic fitting | 0.9782 | 13.45 | 10.53 | 1458 | |
Wavelet | 0.9804 | 12.86 | 10.27 | 1451 | |
EMD | 0.9807 | 12.76 | 10.19 | 1455 | |
May | LMD | 0.9854 | 12.46 | 9.94 | 1631 |
Quadratic fitting | 0.9819 | 14.13 | 11.21 | 1637 | |
Cubic fitting | 0.9821 | 13.85 | 10.88 | 1651 | |
Wavelet | 0.9845 | 12.83 | 10.28 | 1653 | |
EMD | 0.9844 | 12.97 | 10.30 | 1656 | |
Jun | LMD | 0.9868 | 13.12 | 10.37 | 1551 |
Quadratic fitting | 0.9860 | 13.80 | 11.13 | 1522 | |
Cubic fitting | 0.9847 | 14.13 | 11.12 | 1563 | |
Wavelet | 0.9874 | 12.87 | 10.29 | 1554 | |
EMD | 0.9865 | 13.40 | 10.63 | 1568 | |
Jul | LMD | 0.9873 | 12.95 | 10.07 | 1586 |
Quadratic fitting | 0.9867 | 13.75 | 10.97 | 1551 | |
Cubic fitting | 0.9850 | 14.22 | 10.91 | 1607 | |
Wavelet | 0.9876 | 12.88 | 10.19 | 1590 | |
EMD | 0.9880 | 12.75 | 10.10 | 1587 | |
Aug | LMD | 0.9774 | 14.72 | 11.09 | 1598 |
Quadratic fitting | 0.9751 | 15.77 | 12.24 | 1583 | |
Cubic fitting | 0.9750 | 15.46 | 11.65 | 1599 | |
Wavelet | 0.9764 | 14.99 | 11.42 | 1617 | |
EMD | 0.9765 | 15.09 | 11.44 | 1618 | |
Sep | LMD | 0.9746 | 13.51 | 10.39 | 1545 |
Quadratic fitting | 0.9714 | 14.76 | 11.54 | 1540 | |
Cubic fitting | 0.9734 | 13.76 | 10.64 | 1531 | |
Wavelet | 0.9752 | 13.25 | 10.34 | 1558 | |
EMD | 0.9752 | 13.38 | 10.46 | 1556 | |
Oct | LMD | 0.9827 | 12.35 | 9.87 | 1558 |
Quadratic fitting | 0.9811 | 13.14 | 10.66 | 1516 | |
Cubic fitting | 0.9797 | 13.27 | 10.55 | 1543 | |
Wavelet | 0.9818 | 12.71 | 10.19 | 1565 | |
EMD | 0.9815 | 12.80 | 10.22 | 1565 | |
Nov | LMD | 0.9874 | 12.20 | 9.61 | 1494 |
Quadratic fitting | 0.9862 | 13.14 | 10.38 | 1468 | |
Cubic fitting | 0.9857 | 12.96 | 10.09 | 1488 | |
Wavelet | 0.9867 | 12.59 | 9.84 | 1504 | |
EMD | 0.9873 | 12.31 | 9.69 | 1493 | |
Dec | LMD | 0.9881 | 13.25 | 10.44 | 1584 |
Quadratic fitting | 0.9859 | 14.76 | 11.59 | 1568 | |
Cubic fitting | 0.9874 | 13.61 | 10.73 | 1580 | |
Wavelet | 0.9876 | 13.61 | 10.72 | 1597 | |
EMD | 0.9872 | 13.85 | 10.88 | 1598 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Ren, C.; Liang, X.; Liang, Y.; Yin, A.; Liang, J.; Yue, W. Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition. Sensors 2023, 23, 6540. https://doi.org/10.3390/s23146540
Wei Z, Ren C, Liang X, Liang Y, Yin A, Liang J, Yue W. Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition. Sensors. 2023; 23(14):6540. https://doi.org/10.3390/s23146540
Chicago/Turabian StyleWei, Zhenkui, Chao Ren, Xingyong Liang, Yueji Liang, Anchao Yin, Jieyu Liang, and Weiting Yue. 2023. "Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition" Sensors 23, no. 14: 6540. https://doi.org/10.3390/s23146540
APA StyleWei, Z., Ren, C., Liang, X., Liang, Y., Yin, A., Liang, J., & Yue, W. (2023). Sea-Level Estimation from GNSS-IR under Loose Constraints Based on Local Mean Decomposition. Sensors, 23(14), 6540. https://doi.org/10.3390/s23146540