Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera
Abstract
:1. Introduction
2. Principle
2.1. Separation of Fringe Patterns and Speckle Patterns
2.2. Calculation of Out-of-Plane Displacement Using FPP
2.3. Calculation of in-Plane Displacement Using 2D-DIC Based on a Telecentric Lens
3. Experiment
3.1. Measurement of System Accuracy
3.2. Free-End-Loading Experiment with Cantilever Beam
3.3. Center-Loading Experiment of Disk
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sutton, M.A. Experimental Measurements Using Digital Image Correlation Methods: Brief Background and Perspective on Future Developments. ASME J. Eng. Mater. Technol. 2023, 145, 014701. [Google Scholar] [CrossRef]
- Chuda-Kowalska, M.; Gajewski, T.; Garbowski, T. Mechanical characterization of orthotropic elastic parameters of a foam by the mixed experimental-numerical analysis. J. Theor. Appl. Mech. 2015, 53, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Garbowski, T.; Knitter-Piątkowska, A.; Marek, A. New Edge Crush Test Configuration Enhanced with Full-Field Strain Measurements. Materials 2021, 14, 5768. [Google Scholar] [CrossRef] [PubMed]
- Adlafi, M.; Galpin, B.; Mahéo, L.; Roth, C.C.; Mohr, D.; Grolleau, V. Simplified measurement of the strain to fracture for plane strain tension: On the use of 2D DIC for dual hole plane strain tension mini Nakazima specimens with dihedral punch. IOP Conf. Series Mater. Sci. Eng. 2021, 1157, 012058. [Google Scholar] [CrossRef]
- Gothivarekar, S.; Coppieters, S.; Van de Velde, A.; Debruyne, D. Advanced FE model validation of cold-forming process using DIC: Air bending of high strength steel. Int. J. Mater. Form. 2020, 13, 409–421. [Google Scholar] [CrossRef]
- Berfield, T.A.; Patel, J.K.; Shimmin, R.G.; Braun, P.V.; Lambros, J.; Sottos, N.R. Fluorescent Image Correlation for Nanoscale Deformation Measurements. Small 2006, 2, 631–635. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, X.; Xu, Y.; Shao, X.; Sun, W.; He, X. Internal displacement measurements based on color fluorescent speckle pattern by multispectral stereo-DIC and refractive index correction. Appl. Opt. 2022, 61, 6504–6509. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Wang, X.; Xie, Z.; Luo, H.; He, Y.; Guo, L.; Li, Y.; Gan, R.; Lu, H. Fluorescent digital image correlation techniques in experimental mechanics. Sci. China Technol. Sci. 2017, 61, 21–36. [Google Scholar] [CrossRef]
- Zhu, K.; Li, C.; Pan, B. Rapid and Repeatable Fluorescent Speckle Pattern Fabrication Using a Handheld Inkjet Printer. Exp. Mech. 2022, 62, 627–637. [Google Scholar] [CrossRef]
- Berfield, T.A.; Carroll, J.F.; Payne, D.A.; Sottos, N.R. Thermal strain measurement in sol-gel lead zirconate titanate thin films. J. Appl. Phys. 2009, 106, 123501. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z. A new image processing technique for determination of cell-generated deformations on substrata. Comput. Methods Biomech. Biomed. Eng. 2008, 11, 159–167. [Google Scholar] [CrossRef]
- Jones, E.M.C.; Silberstein, M.N.; White, S.; Sottos, N.R. In Situ Measurements of Strains in Composite Battery Electrodes during Electrochemical Cycling. Exp. Mech. 2014, 54, 971–985. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, Q.; Feng, S.; Zuo, C. Microscopic fringe projection profilometry: A review. Opt. Lasers Eng. 2020, 135, 106192. [Google Scholar] [CrossRef]
- Gorthi, S.S.; Rastogi, P. Fringe projection techniques: Whither we are? Opt. Lasers Eng. 2009, 48, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Zuo, C.; Zhang, L.; Tao, T.; Hu, Y.; Yin, W.; Qian, J.; Chen, Q. Calibration of fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2021, 143, 106622. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Zuo, C.; Feng, S. Real-time high dynamic range 3D measurement using fringe projection. Opt. Express 2020, 28, 24363. [Google Scholar] [CrossRef]
- Zuo, C.; Feng, S.; Huang, L.; Tao, T.; Yin, W.; Chen, Q. Phase shifting algorithms for fringe projection profilometry: A review. Opt. Lasers Eng. 2018, 109, 23–59. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, L.; Xi, J. Reconstruction of moving object with single fringe pattern based on phase shifting profilometry. Opt. Eng. 2021, 60, 084106. [Google Scholar] [CrossRef]
- Duan, X.; Liu, G.; Wang, J. Three-dimensional measurement method of color fringe projection based on an improved three-step phase-shifting method. Appl. Opt. 2021, 60, 7007–7016. [Google Scholar] [CrossRef]
- Sansoni, G.; Corini, S.; Lazzari, S.; Rodella, R.; Docchio, F. Three-dimensional imaging based on Gray-code light projection: Characterization of the measuring algorithm and development of a measuring system for industrial applications. Appl. Opt. 1997, 36, 4463–4472. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Qian, K. A comparative study on temporal phase unwrapping methods in high-speed fringe projection profilometry. Opt. Lasers Eng. 2021, 142, 106613. [Google Scholar] [CrossRef]
- Huntley, J.M.; Saldner, H. Temporal phase-unwrapping algorithm for automated interferogram analysis. Appl. Opt. 1993, 32, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Feng, S.; Tao, T.; Hu, Y.; Li, Y.; Chen, Q.; Zuo, C. Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement. APL Photonics 2020, 5, 046105. [Google Scholar] [CrossRef] [Green Version]
- Zuo, C.; Huang, L.; Zhang, M.; Chen, Q.; Asundi, A. Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review. Opt. Lasers Eng. 2016, 85, 84–103. [Google Scholar] [CrossRef]
- Huang, L.; Chua, P.S.K.; Asundi, A. Least-squares calibration method for fringe projection profilometry considering camera lens distortion. Appl. Opt. 2010, 49, 1539–1548. [Google Scholar] [CrossRef]
- Zhou, W.S.; Su, X.Y. A Direct mapping algorithm for phase-measuring profilometry. Optica Acta 1994, 41, 89–94. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Zhang, S.; Chen, H.; Guan, Y.; Chen, K. A self-recalibration method based on scale-invariant registration for structured light measurement systems. Opt. Lasers Eng. 2017, 88, 75–81. [Google Scholar] [CrossRef]
- Tay, C.J.; Quan, C.; Tao, W.; Huang, Y.H. Integrated method for 3-D rigid-body displacement measurement using fringe projection. Opt. Eng. 2004, 43, 1152–1159. [Google Scholar] [CrossRef]
- Shi, H.J.; He, X.Y.; Ji, H.W. Optical 3D deformation measurement system and its application to investigation of mechanical behaviors of micro-structure. Acta Opt. Sin. 2011, 31, 135–140. [Google Scholar]
- Felipe-Sesé, L.; Siegmann, P.; Díaz, F.A.; Patterson, E.A. Simultaneous in-and-out-of-plane displacement measurements using fringe projection and digital image correlation. Opt. Lasers Eng. 2014, 52, 66–74. [Google Scholar] [CrossRef]
- Pastor-Cintas, M.; Felipe-Sesé, L.; Molina-Viedma, Á.; López-Alba, E.; Díaz-Garrido, F. Modal Shape Visualization Employing FP + 2D-DIC and Phased-Based Motion Magnification. Phys. Sci. Forum 2022, 4, 14. [Google Scholar] [CrossRef]
- Felipe-Sesé, L.; Molina-Viedma, J.; López-Alba, E.; Díaz, F.A. RGB Colour Encoding Improvement for Three-Dimensional Shapes and Displacement Measurement Using the Integration of Fringe Projection and Digital Image Correlation. Sensors 2018, 18, 3130. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Guo, W.; Pan, B.; Kemao, Q.; Zhang, Q. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces. Opt. Lasers Eng. 2021, 142, 106614. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Xu, Z. High-Accuracy Three-Dimensional Deformation Measurement System Based on Fringe Projection and Speckle Correlation. Sensors 2023, 23, 680. [Google Scholar] [CrossRef]
- Suresh, V.; Chi, Y.; Pan, B.; Li, B. Photomechanics evaluation combining fringe projection and digital height correlation. In Interferometry XX; SPIE: Bellingham, WA, USA, 2020; Volume 11490, pp. 113–120. [Google Scholar] [CrossRef]
- Siegmann, P.; Felipe-Sese, L.; Diaz-Garrido, F. Improved 3D displacement measurements method and calibration of a combined fringe projection and 2D-DIC system. Opt. Lasers Eng. 2017, 88, 255–264. [Google Scholar] [CrossRef]
W/mm | MAE/mm | RMSE/mm | Error/% |
---|---|---|---|
1 | 0.013 | 0.056 | 1.3 |
2 | 0.003 | 0.053 | 0.15 |
3 | 0.017 | 0.064 | 0.57 |
4 | 0.009 | 0.075 | 0.23 |
5 | 0.027 | 0.081 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Xu, Z.; Li, X.; Chen, Z.; Tang, X. Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera. Sensors 2023, 23, 6663. https://doi.org/10.3390/s23156663
Sun W, Xu Z, Li X, Chen Z, Tang X. Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera. Sensors. 2023; 23(15):6663. https://doi.org/10.3390/s23156663
Chicago/Turabian StyleSun, Wei, Zhongda Xu, Xin Li, Zhenning Chen, and Xinqiao Tang. 2023. "Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera" Sensors 23, no. 15: 6663. https://doi.org/10.3390/s23156663
APA StyleSun, W., Xu, Z., Li, X., Chen, Z., & Tang, X. (2023). Three-Dimensional Shape and Deformation Measurements Based on Fringe Projection Profilometry and Fluorescent Digital Image Correlation via a 3 Charge Coupled Device Camera. Sensors, 23(15), 6663. https://doi.org/10.3390/s23156663