A Review on Electrospun Nanofiber Composites for an Efficient Electrochemical Sensor Applications
Abstract
:1. Introduction
2. The Nanofibers and Electrospinning Method
2.1. The Development of Electrospinning
2.2. The Nanofiber Formation by Electrospinning Method
2.3. Electrospinning Parameters and Factors Affecting the Morphology of Nanofibers
- Setup parameters include the feeding rate, diameter, and shape of the spinneret, separation between the collector and the spinneret tip, and collector’s shape.
- Polymer solution parameters include additives, solvents, polymers, and properties.
- Environmental variables include temperature, relative humidity, and gas velocity.
3. Chemical Sensors
3.1. Volatile Organic Compound (VOC) Sensor
3.1.1. Acetone Sensor
3.1.2. Ethanol Sensor
3.1.3. Ammonia Sensor
3.2. Carbon Dioxide Sensor
3.3. Hydrogen Peroxide (H2O2) Sensor
3.4. Nitric Oxide (NO) Sensor
4. Biosensors
4.1. Glucose Sensor
4.2. Uric Acid Sensor
4.3. Cholesterol Sensor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naresh, V.; Lee, N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Keirouz, A.; Wang, Z.; Reddy, V.S.; Nagy, Z.K.; Vass, P.; Buzgo, M.; Ramakrishna, S.; Radacsi, N. The History of Electrospinning: Past, Present, and Future Developments. Adv. Mater. Technol. 2023, 8, 2201723. [Google Scholar] [CrossRef]
- Xu, H.; Yagi, S.; Ashour, S.; Du, L.; Hoque, M.E.; Tan, L. A Review on Current Nanofiber Technologies: Electrospinning, Centrifugal Spinning, and Electro-Centrifugal Spinning. Macromol. Mater. Eng. 2022, 308, 2200502. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Taylor, G.I. Electrically driven jets. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 313, 453–475. [Google Scholar] [CrossRef]
- Taylor, G. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1964, 280, 383–397. [Google Scholar]
- Yang, Z.; Wang, C.; Lu, X. Nanofibrous Materials; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 978-0-32351-270-1. [Google Scholar]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 2100410. [Google Scholar] [CrossRef]
- Mehta, P.P.; Pawar, V.S. Electrospun Nanofiber Scaffolds: Technology and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 978-0-12813-758-1. [Google Scholar]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef]
- Ji, X.; Su, Z.; Wang, P.; Ma, G.; Zhang, S. “Ready-to-use” hollow nanofiber membrane-based glucose testing strips. Analyst 2014, 139, 6467–6473. [Google Scholar] [CrossRef]
- Zhou, C.; Xu, L.; Song, J.; Xing, R.; Xu, S.; Liu, D.; Song, H. Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning. Sci. Rep. 2014, 4, 7382. [Google Scholar] [CrossRef] [Green Version]
- Venugopal, V. Biosensors in fish production and quality control. Biosens. Bioelectron. 2002, 17, 147–157. [Google Scholar] [CrossRef]
- Weller, M.G.; Schuetz, A.J.; Winklmair, M.; Niessner, R. Highly parallel affinity sensor for the detection of environmental contaminants in water. Anal. Chim. Acta 1999, 393, 29–41. [Google Scholar] [CrossRef]
- Huet, A.C.; Delahaut, P.; Fodey, T.; Haughey, S.A.; Elliott, C.; Weigel, S. Advances in biosensor-based analysis for antimicrobial residues in foods. TrAC Trends Anal. Chem. 2010, 29, 1281–1294. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. [Google Scholar] [CrossRef]
- Conroy, P.J.; Hearty, S.; Leonard, P.; O’Kennedy, R.J. Antibody production, design and use for biosensor-based applications. Semin. Cell Dev. Biol. 2009, 20, 10–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Liu, X.; Jin, Y.; Zhu, Y.; Zeng, D.; Jiang, X.; Ma, H. Electrospinning of poly(dimethylsiloxane)/poly(methyl methacrylate) nanofibrous membrane: Fabrication and application in protein microarrays. Biomacromolecules 2009, 10, 3335–3340. [Google Scholar] [CrossRef]
- Asano, N.; Sugihara, S.; Suye, S.I.; Fujita, S. Electrospun Porous Nanofibers with Imprinted Patterns Induced by Phase Separation of Immiscible Polymer Blends. ACS Omega 2022, 7, 19997–20005. [Google Scholar] [CrossRef]
- Zuo, F.; Tan, D.H.; Wang, Z.; Jeung, S.; MacOsko, C.W.; Bates, F.S. Nanofibers from melt blown fiber-in-fiber polymer blends. ACS Macro Lett. 2013, 2, 301–305. [Google Scholar] [CrossRef]
- Liao, H.S.; Lin, J.; Liu, Y.; Huang, P.; Jin, A.; Chen, X. Self-assembly mechanisms of nanofibers from peptide amphiphiles in solution and on substrate surfaces. Nanoscale 2016, 8, 14814–14820. [Google Scholar] [CrossRef] [Green Version]
- Daristotle, J.L.; Behrens, A.M.; Sandler, A.D.; Kofinas, P. A Review of the Fundamental Principles and Applications of Solution Blow Spinning. ACS Appl. Mater. Interfaces 2016, 8, 34951–34963. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, C.; Padilla, V.; Lozano, K.; Villarreal, A.; Materon, L.; Gilkerson, R. Development and characterization of Forcespinning® mesquite gum nanofibers. Mater. Today Commun. 2022, 33, 104599. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- Ayitou, A.J.L.; Sivaguru, J. Light-induced transfer of molecular chirality in solution: Enantiospecific photocyclization of molecularly chiral acrylanilides. J. Am. Chem. Soc. 2009, 131, 5036–5037. [Google Scholar] [CrossRef]
- Mercante, L.A.; Andre, R.S.; Mattoso, L.H.C.; Correa, D.S. Electrospun Ceramic Nanofibers and Hybrid-Nanofiber Composites for Gas Sensing. ACS Appl. Nano Mater. 2019, 2, 4026–4042. [Google Scholar] [CrossRef]
- Wu, H.; Sun, Y.; Lin, D.; Zhang, R.; Zhang, C.; Pan, W. GaN nanofibers based on electrospinning: Facile synthesis, controlled assembly, precise doping, and application as high performance UV photodetector. Adv. Mater. 2009, 21, 227–231. [Google Scholar] [CrossRef]
- Boys, C.V. On the Production, Properties, and some suggested Uses of the Finest Threads. Proc. Phys. Soc. Lond. 1887, 9, 8. [Google Scholar] [CrossRef]
- Melcher, J.R.; Taylor, G.I. Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses. Annu. Rev. Fluid Mech. 1969, 1, 111–146. [Google Scholar] [CrossRef]
- Rodoplu, D.; Mutlu, M. Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces. J. Eng. Fiber. Fabr. 2012, 7, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Bkkar, M.; Olekhnovich, R.; Kremleva, A.; Sitnikova, V.; Kovach, Y.; Zverkov, N.; Uspenskaya, M. Influence of Electrospinning Setup Parameters on Properties of polymer-perovskite nanofibers. Polymers 2023, 15, 731. [Google Scholar]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Bending instability in electrospinning of nanofibers. J. Appl. Phys. 2001, 89, 3018–3026. [Google Scholar] [CrossRef]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 4836–4846. [Google Scholar] [CrossRef]
- Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. [Google Scholar] [CrossRef] [PubMed]
- Reneker, D.H.; Hao, F. Polymeric nanofibers: Introduction. ACS Symp. Ser. 2006, 918, 1–6. [Google Scholar] [CrossRef]
- Reneker, D.H.; Yarin, A.L. Electrospinning jets and polymer nanofibers. Polymer 2008, 49, 2387–2425. [Google Scholar] [CrossRef] [Green Version]
- Hohman, M.M.; Shin, M.; Rutledge, G.; Brenner, M.P. Electrospinning and electrically forced jets. II. Applications. Phys. Fluids 2001, 13, 2221–2236. [Google Scholar] [CrossRef] [Green Version]
- Nadaf, A.; Gupta, A.; Hasan, N.; Fauziya, N.; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Adv. 2022, 12, 23808–23828. [Google Scholar] [CrossRef]
- Collins, G.; Federici, J.; Imura, Y.; Catalani, L.H. Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. J. Appl. Phys. 2012, 111, 44701. [Google Scholar] [CrossRef]
- Han, T.; Reneker, D.H.; Yarin, A.L. Pendulum-like motion of straight electrified jets. Polymer 2008, 49, 2160–2169. [Google Scholar] [CrossRef]
- Sapountzi, E.; Braiek, M.; Chateaux, J.F.; Jaffrezic-Renault, N.; Lagarde, F. Recent advances in electrospun nanofiber interfaces for biosensing devices. Sensors 2017, 17, 1887. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, H.; Jose, R.; Ramakrishna, S. Electrospun ceramic nanofiber mats today: Synthesis, properties, and applications. Materials 2017, 10, 1238. [Google Scholar] [CrossRef] [Green Version]
- Song, X.; Liu, J.; Wang, J.; Yao, S.; Liu, B.; Ma, Y.; Liu, W.; Cai, Q. Non-isothermal crystallization kinetics for electrospun 3Al2O3·B2O3·2SiO2 ceramic nanofibers prepared using different silica sources. Ceram. Int. 2019, 45, 1392–1399. [Google Scholar] [CrossRef]
- Forward, K.M.; Rutledge, G.C. Free surface electrospinning from a wire electrode. Chem. Eng. J. 2012, 183, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Mei, S.; Feng, X.; Jin, Z. Fabrication of polymer nanospheres based on rayleigh instability in capillary channels. Macromolecules 2011, 44, 1615–1620. [Google Scholar] [CrossRef]
- Haupt, B.J.; Ennis, J.; Sevick, E.M. Detachment of a polymer chain from a weakly adsorbing surface using an AFM tip. Langmuir 1999, 15, 3886–3892. [Google Scholar] [CrossRef]
- Islam, M.N.; Channon, R.B. Electrochemical sensors. Bioeng. Innov. Solut. Cancer 2019, 74, 47–71. [Google Scholar] [CrossRef]
- Windmiller, J.R.; Wang, J. Wearable Electrochemical Sensors and Biosensors: A Review. Electroanalysis 2013, 25, 29–46. [Google Scholar] [CrossRef]
- Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens. 2020, 5, 2679–2700. [Google Scholar] [CrossRef]
- Du, H.; Yang, W.; Yi, W.; Sun, Y.; Yu, N.; Wang, J. Oxygen-Plasma-Assisted Enhanced Acetone-Sensing Properties of ZnO Nanofibers by Electrospinning. ACS Appl. Mater. Interfaces 2020, 12, 23084–23093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, X.; Wu, J.; Wang, X.; Lv, X.; Liu, G.; Li, B.; Zhou, J.; Xie, E.; Zhang, Z. Electrospun Nb-doped CeO2 nanofibers for humidity independent acetone sensing. Appl. Surf. Sci. 2022, 602, 154303. [Google Scholar] [CrossRef]
- Wu, J.; Zou, S.; Wang, B.; Feng, C.; Yoshinobu, T. Enhanced acetone sensing properties of W-doped ZnFe2O4 electrospinning nanofibers. J. Alloys Compd. 2023, 938, 168440. [Google Scholar] [CrossRef]
- Jun, L.; Chen, Q.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Electrospun Yb-Doped In2O3Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS Appl. Mater. Interfaces 2020, 12, 38425–38434. [Google Scholar] [CrossRef]
- Li, F.; Song, H.; Yu, W.; Ma, Q.; Dong, X.; Wang, J.; Liu, G. Electrospun TiO2//SnO2 Janus nanofibers and its application in ethanol sensing. Mater. Lett. 2020, 262, 2–5. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, H.; Niu, G.; Wang, F. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity. Sens. Actuators B Chem. 2019, 299, 126946. [Google Scholar] [CrossRef]
- Fan, S.X.; Tang, W. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature. Sens. Actuators B Chem. 2022, 362, 131789. [Google Scholar] [CrossRef]
- Jian, A.; Wang, J.; Lin, H.; Xu, S.; Han, D.; Yuan, Z.; Zhuo, K. Synthesis of MoS2Nanochains by Electrospinning for Ammonia Detection at Room Temperature. ACS Omega 2022, 7, 11664–11670. [Google Scholar] [CrossRef]
- Abdali, H.; Heli, B.; Ajji, A. Stable and sensitive amino-functionalized graphene/polyaniline nanofiber composites for room-temperature carbon dioxide sensing. RSC Adv. 2019, 9, 41240–41247. [Google Scholar] [CrossRef]
- Pantò, F.; Leonardi, S.G.; Fazio, E. CO2 sensing properties of electro-spun Ca-doped ZnO fibres. Nanotechnology 2018, 29, 305501. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.A.; Yuan, Z.; Mahmood, A.; Liu, F.; Sui, X.; Chen, J.; Huang, Q.; Liao, X.; Wei, L.; Chen, Y. Hierarchically porous carbon nanofibers embedded with cobalt nanoparticles for efficient H2O2 detection on multiple sensor platforms. Sens. Actuators B Chem. 2020, 319, 128243. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, K.; Xiao, C.; Jia, L. Electrospun Bi-doped SnO2 porous nanosheets for highly sensitive nitric oxide detection. J. Hazard. Mater. 2021, 416, 126118. [Google Scholar] [CrossRef]
- Stevenson, H.; Bacon, A.; Joseph, K.M.; Gwandaru, W.R.W.; Bhide, A.; Sankhala, D.; Dhamu, V.N.; Prasad, S. A Rapid Response Electrochemical Biosensor for Detecting Thc In Saliva. Sci. Rep. 2019, 9, 12701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Luo, L.; Zhang, Z.; Ding, Y.; Liu, S.; Deng, D.; Zhao, H.; Chen, Y. Synthesis of MnCo2O4 nanofibers by electrospinning and calcination: Application for a highly sensitive non-enzymatic glucose sensor. J. Mater. Chem. B 2014, 2, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Zhao, X.; Zhang, X.; Lai, Y.; Wang, X.; Li, J.; Wei, G.; Su, Z. Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl. Mater. Interfaces 2014, 6, 7563–7571. [Google Scholar] [CrossRef]
- Lu, N.; Shao, C.; Li, X.; Miao, F.; Wang, K.; Liu, Y. CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram. Int. 2016, 42, 11285–11293. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, J.; Zhang, S.; Wang, W.; Chen, Z. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres. Sens. Actuators B Chem. 2015, 211, 385–391. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, D.; Zhang, X.; Li, L.; Hou, H.; Niwa, O.; You, T. Pd-Ni alloy nanoparticle/carbon nanofiber composites: Preparation, structure, and superior electrocatalytic properties for sugar analysis. Anal. Chem. 2014, 86, 5898–5905. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting polymers: A comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Goode, J.A.; Rushworth, J.V.H.; Millner, P.A. Biosensor Regeneration: A Review of Common Techniques and Outcomes. Langmuir 2015, 31, 6267–6276. [Google Scholar] [CrossRef]
- Muqaddas, S.; Javed, M.; Nadeem, S.; Asghar, M.A.; Haider, A.; Ahmad, M.; Ashraf, A.R.; Nazir, A.; Iqbal, M.; Alwadai, N.; et al. Carbon Nanotube Fiber-Based Flexible Microelectrode for Electrochemical Glucose Sensors. ACS Omega 2022, 8, 2272–2280. [Google Scholar] [CrossRef]
- Wei, X.; Zhu, M.; Li, J.; Liu, L.; Yu, J.; Li, Z.; Ding, B. Wearable biosensor for sensitive detection of uric acid in artificial sweat enabled by a fiber structured sensing interface. Nano Energy 2021, 85, 106031. [Google Scholar] [CrossRef]
- Mondal, K.; Ali, M.A.; Agrawal, V.V.; Malhotra, B.D.; Sharma, A. Highly sensitive biofunctionalized mesoporous electrospun TiO2 nanofiber based interface for biosensing. ACS Appl. Mater. Interfaces 2014, 6, 2516–2527. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Cheng, Z.; Yang, J.; Li, Y. A Sensitive Acetone Sensor Based on WS2/WO3Nanosheets with p-n Heterojunctions. ACS Appl. Nano Mater. 2022, 5, 12592–12599. [Google Scholar] [CrossRef]
- Tian, R.; Gao, Z.; Chen, G.; Guan, H.; Dong, C.; Comini, E. Functionalized Pt nanoparticles between α/γ-Fe2O3 and MXene for superior acetone sensing. Sens. Actuators B Chem. 2023, 383, 133584. [Google Scholar] [CrossRef]
- Shao, W.; Lu, J.; Zheng, Z.; Liu, R.; Wang, X.; Zhao, Z.; Lu, Y.; Zhu, L.; Ye, Z. Heterojunctions on Ta2O5@MWCNT for Ultrasensitive Ethanol Sensing at Room Temperature. ACS Appl. Mater. Interfaces 2023, 15, 4315–4328. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Peng, Q.; Li, Y. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater. 2005, 17, 764–767. [Google Scholar] [CrossRef]
- Satya, V.; Swamy, C.; Parne, S.R.; Pothukanuri, N.; Sriram, S.R.; Yelsani, V. Investigattions on ZnO Thin Films Modified with Urea: An Approach as Ammonia Sensor. ACS Omega 2023, 8, 17719–17730. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Kumar, S.; Yu, Y.; Awasthi, K. Flexible, Low-Cost, and Room Temperature Ammonia Sensor Based on Polypyrrole and Functionalized MWCNT Nanocomposites in Extreme Bending Conditions. ACS Appl. Polym. Mater. 2022, 5, 1945–1954. [Google Scholar] [CrossRef]
- Li, Q.; Sun, M.; Jiang, C.; Song, S.; Li, T. Phosphorus doping of graphene for conductometric room temperature ammonia sensing. Sens. Actuators B Chem. 2023, 379, 133234. [Google Scholar] [CrossRef]
- Li, X.; Tang, B.; Wu, B.; Hsu, C.; Wang, X. Highly Sensitive Diffraction Grating of Hydrogels as Sensors for Carbon Dioxide Detection. Ind. Eng. Chem. Res. 2021, 60, 4639–4649. [Google Scholar] [CrossRef]
- Pohl, T.; Sterl, F.; Strohfeldt, N.; Giessen, H. Optical Carbon Dioxide Detection in the Visible Down to the Single Digit ppm Range Using Plasmonic Perfect Absorbers. ACS Sens. 2020, 5, 2628–2635. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, Y.; Han, B.; Liu, S.; Fu, X.; Ding, H.; Zhang, Y. Programmable Laser Patterning of Ag Nanoparticles and Reduced Graphene Oxide Hybrid Electrodes for Nonenzymatic Hydrogen Peroxide Detection. ACS Appl. Nano Mater. 2019, 2, 7989–7996. [Google Scholar] [CrossRef]
- Liu, B.; Ran, B.; Chen, C.; Shi, L.; Jin, J.; Zhu, Y. High-Throughput Microfluidic Production of Bimetallic Nanoparticles on MXene Nanosheets and Application in Hydrogen Peroxide Detection. ACS Appl. Mater. Interfaces 2022, 14, 56298–56309. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Gao, N.; Zhu, L.; Hunter, M.; Chen, S. PEDOT: PSS/PEDOT Film Chemiresistive Sensors for Hydrogen Peroxide Vapor Detection under Ambient Conditions. Chemosensors 2023, 11, 124. [Google Scholar]
- Quan, W.; Shi, J.; Luo, H.; Fan, C.; Lv, W.; Chen, X.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Fully Flexible MXene-based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection. ACS Sens. 2023, 8, 103–113. [Google Scholar] [CrossRef]
- Alagh, A.; Annanouch, F.E.; Sierra-castillo, A.; Haye, E.; Colomer, J.; Llobet, E. Three-Dimensional Assemblies of Edge-Enriched WSe 2 Nanoflowers for Selectively Detecting Ammonia or Nitrogen Dioxide. ACS Appl. Mater. Interfaces 2022, 14, 54946–54960. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, S.N.; Ghosh, D.; Debnath, S.; Biswas, R.; Chatterjee, P.B.; Biswas, P. Copper(II)-Incorporated Porphyrin-Based Porous Organic Polymer for a Nonenzymatic Electrochemical Glucose Sensor. Inorg. Chem. 2023, 62, 4136–4146. [Google Scholar] [CrossRef] [PubMed]
- Graphene, L.; Li, C.; Xiong, J.; Zheng, C.; Zhao, J. Screen-Printing Preparation of High-Performance Nonenzymatic Glucose Sensors Based on Co3O4 Nanoparticles-Embedded N-Doped Laser-Induced Graphene. ACS Appl. Nano Mater. 2022, 5, 16655–16663. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Mu, W.; Wan, X.; Lu, D.; Gao, J.; Wen, D. Nonenzymatic Sweat Wearable Uric Acid Sensor Based on N-Doped Reduced Graphene Oxide/Au Dual Aerogels. Anal. Chem. 2023, 95, 3864–3872. [Google Scholar] [CrossRef]
- Wang, Y.; Rinawati, M.; Zhan, J.; Lin, K.; Huang, C.; Chen, K.; Mizuguchi, H.; Jiang, J.; Hwang, B.; Yeh, M. Boron-Doped Graphene Quantum Dots Anchored to Carbon Nanotubes as Noble Metal-Free Electrocatalysts of Uric Acid for a Wearable Sweat Sensor. ACS Appl. Nano Mater. 2022, 5, 11100–11110. [Google Scholar] [CrossRef]
- Komathi, S.; Muthuchamy, N.; Lee, K.; Gopalan, A. Biosensors and Bioelectronics Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks. Biosens. Bioelectron. 2016, 84, 64–71. [Google Scholar] [CrossRef]
- Khan, S.; Asim, M.; Shah, A.; Mahmood, A.; Waheed, A.; Karim, S.; Khan, M.; Ali, G. Materials Science in Semiconductor Processing Preparation of oxidized Zn—In nanostructures for electrochemical non-enzymatic cholesterol sensing. Mater. Sci. Semicond. Process. 2021, 135, 106101. [Google Scholar] [CrossRef]
S. No | Material | Sensor | Method | Detection Limit | Ref. |
---|---|---|---|---|---|
1 | WS2/WO3 heterojunctions | Acetone | In situ oxidation technique | 20 ppm | [73] |
2 | A/γ-Fe2O3 is coupled with MXene (Ti3C2Tx) | Acetone | Sol-gel method | 0.5 ppm | [74] |
3 | Heterojunctions of Ta2O5 and multiwalled carbon nanotubes (MWCNTS) | Ethanol | Hydrothermal method | 0.173 ppm | [75] |
4 | Vanadium oxide nanobelts | Ethanol | Hydrothermal | 5 ppm | [76] |
5 | Urea-modified zinc oxide thin films | Ammonia | Spray pyrolysis | 25 ppm | [77] |
6 | Polypyrrole/functionalized MWCNT | Ammonia | Chemical oxidative polymerization method | 5 ppm | [78] |
7 | Phosphorus-doped graphene | Ammonia | Chemical vapor deposition (CVD) | 0.068 ppm | [79] |
8 | Hydrogel (Dimethylaminopropyl methacrylamide, methyl methacrylate, and 2-hydroxyethyl methacrylate) | CO2 | Soft-lithographic duplication of photoinduced surface relief-gratings | 2 ppm | [80] |
9 | Polyethylenimine (PEI) layer | CO2 | Colloidal etching lithography/ spin coating | 1 ppm | [81] |
10 | Ag nanoparticles/ RGO modified ITO | H2O2 | Laser-scribing method | 111.18 ppm | [82] |
11 | Ti3C2tx/pt-pd | H2O2 | Microfluidic approach | 10.20 ppm | [83] |
12 | PEDOT:PSS | H2O2 | In situ electrochemical polymerization | 1.0 ppm | [84] |
13 | Ti3C2Tx/WS2 | NO2 | Sonication method | 0.011 ppm | [85] |
14 | Two-dimensional WSe2 | NO2 | Selenization of tungsten trioxide | <0.1 ppm | [86] |
15 | A Cu complex of porous organic polymer based on porphyrin (Cu-TEG-POR) | Glucose | Polymer synthesis/complexation | 162.14 ppm | [87] |
16 | N-Doped Co3O4 Nanoparticles/graphene | Glucose | Laser-scribing technique | 86.47 ppm | [88] |
17 | N-doped reduced graphene oxide/au dual aerogels | Uric Acid | Hydro- and Aerogel Synthesis | 622.01 ppm | [89] |
18 | B-doped graphene quantum dots anchored to carbon nanotubes | Uric acid | Hydrothermal/ synthesis | 166.43 ppm | [90] |
19 | Tio2 nanowire bridged 3D graphene Nano stacks | Cholesterol | Electrospinning/sonication | 2319 ppm | [91] |
20 | Oxidized Zn–In nanostructures | Cholesterol | Co-electrodeposition /hydrothermal oxidation | 38.66 ppm | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanaraj, R.; Arumugam, B.; Mayakrishnan, G.; Kim, I.S.; Kim, S.C. A Review on Electrospun Nanofiber Composites for an Efficient Electrochemical Sensor Applications. Sensors 2023, 23, 6705. https://doi.org/10.3390/s23156705
Vanaraj R, Arumugam B, Mayakrishnan G, Kim IS, Kim SC. A Review on Electrospun Nanofiber Composites for an Efficient Electrochemical Sensor Applications. Sensors. 2023; 23(15):6705. https://doi.org/10.3390/s23156705
Chicago/Turabian StyleVanaraj, Ramkumar, Bharathi Arumugam, Gopiraman Mayakrishnan, Ick Soo Kim, and Seong Cheol Kim. 2023. "A Review on Electrospun Nanofiber Composites for an Efficient Electrochemical Sensor Applications" Sensors 23, no. 15: 6705. https://doi.org/10.3390/s23156705
APA StyleVanaraj, R., Arumugam, B., Mayakrishnan, G., Kim, I. S., & Kim, S. C. (2023). A Review on Electrospun Nanofiber Composites for an Efficient Electrochemical Sensor Applications. Sensors, 23(15), 6705. https://doi.org/10.3390/s23156705