Weld Seam Tracking and Detection Robot Based on Artificial Intelligence Technology
Abstract
:1. Introduction
2. Implementation of the Weld Seam Tracking and Detection Robot System
2.1. Mechanical Design of the Robot
2.2. System Composition
- (1)
- Achieving stable operation on the steel plate wall surfaces using the Mecanum wheel in combination with the permanent magnet array;
- (2)
- Identifying and extracting weld seams through the weld seam recognition system;
- (3)
- Tracking weld seams by fitting the welding path.
3. Design of the Weld Recognition and Tracking Algorithm
3.1. Establishment of Weld Seam Datasets
3.1.1. Construction of Initial Weld Seam Datasets
3.1.2. Augmentation of Weld Seam Data
3.2. Establishment of a Semantic Segmentation Model
3.2.1. DeepLabv3+Basic Model
3.2.2. Introduction of Lightweight Attention Mechanism Convolutional Block Attention Module
3.2.3. Lightweight Improvement of the Model
- (1)
- Structural design of the backbone network
- (2)
- Design of the convolution module
3.3. Welding Path Fitting
3.3.1. Weld Seam Edge Detection
3.3.2. Fitting of the Weld Centerline
4. Experimental Results and Analysis
4.1. Feasibility Analysis of the Wall-Climbing Robot’s Tracking and Detection
4.2. Model Comparison
4.3. Welding Path Fitting Results
5. Discussion
5.1. Ablation Experiment
5.2. Data Augmentation Experiment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, C.; Wang, H.; Li, H. Defects detection in weld joints based on visual attention and deep learning. NDT E Int. 2023, 133, 102764. [Google Scholar] [CrossRef]
- Kahnamouei, J.T.; Moallem, M. A comprehensive review of in-pipe robots. Ocean. Eng. 2023, 277, 114260. [Google Scholar] [CrossRef]
- Shen, H.Y.; Wu, J.; Lin, T.; Chen, S.B. Arc welding robot system with seam tracking and weld pool control based on passive vision. Int. J. Adv. Manuf. Technol. 2008, 39, 669–678. [Google Scholar] [CrossRef]
- Alkalla, M.G.; Fanni, M.A.; Mohamed, A.M. A novel propeller-type climbing robot for vessels inspection. In Proceedings of the 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan, Republic of Korea, 7–11 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1623–1628. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, H. Autonomous mobile welding robot for discontinuous weld seam recognition and tracking. Int. J. Adv. Manuf. Technol. 2022, 119, 5497–5509. [Google Scholar] [CrossRef]
- Yu, S.; Guan, Y.; Yang, Z.; Liu, C.; Hu, J.; Hong, J.; Zhu, H.; Zhang, T. Multiseam tracking with a portable robotic welding system in unstructured environments. Int. J. Adv. Manuf. Technol. 2022, 122, 2077–2094. [Google Scholar] [CrossRef]
- Teixeira, M.A.S.; Santos, H.B.; Dalmedico, N.; de Arruda, L.V.R.; Neves-Jr, F.; de Oliveira, A.S. Intelligent environment recognition and prediction for NDT inspection through autonomous climbing robot. J. Intell. Robot. Syst. 2018, 92, 323–342. [Google Scholar] [CrossRef]
- Zou, Y.; Li, J.; Chen, X. Seam tracking investigation via striped line laser sensor. Ind. Robot. Int. J. 2017, 44, 609–617. [Google Scholar] [CrossRef]
- Li, J.; Jin, S.; Wang, C.; Xue, J.; Wang, X. Weld line recognition and path planning with spherical tank inspection robots. J. Field Robot. 2022, 39, 131–152. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C.; Sagoe-Crentsil, K.; Zhang, J.; Duan, W. Intelligent robotic systems for structural health monitoring: Applications and future trends. Autom. Constr. 2022, 139, 104273. [Google Scholar] [CrossRef]
- Hu, J.; Han, X.; Tao, Y.; Feng, S. A magnetic crawler wall-climbing robot with capacity of high payload on the convex surface. Robot. Auton. Syst. 2022, 148, 103907. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, Z.; Yan, J.; Ye, P.; Zhang, W.; Mao, S.; Guan, Y. Compact lightweight magnetic gripper designed for biped climbing robots based on coaxial rotation of multiple magnets. Robot. Auton. Syst. 2022, 155, 104164. [Google Scholar] [CrossRef]
- Navaprakash, N.; Ramachandraiah, U.; Muthukumaran, G.; Rakesh, V.; Singh, A.P. Modeling and experimental analysis of suction pressure generated by active suction chamber based wall climbing robot with a novel bottom restrictor. Procedia Comput. Sci. 2018, 133, 847–854. [Google Scholar] [CrossRef]
- Guo, T.; Deng, Z.D.; Liu, X.; Song, D.; Yang, H. Development of a new hull adsorptive underwater climbing robot using the Bernoulli negative pressure effect. Ocean. Eng. 2022, 243, 110306. [Google Scholar] [CrossRef]
- Shi, X.; Xu, L.; Xu, H.; Jiang, C.; Zhao, Z.; Guo, Y.; Chen, X. A 6-DOF humanoid wall-climbing robot with flexible adsorption feet based on negative pressure suction. Mechatronics 2022, 87, 102889. [Google Scholar] [CrossRef]
- Fan, X.A.; Gao, X.; Liu, G.; Ma, N.; Zhang, Y. Research and prospect of welding monitoring technology based on machine vision. Int. J. Adv. Manuf. Technol. 2021, 115, 3365–3391. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.F.; Wang, Q.L.; Xu, D.; Tan, M. Measurement and Defect Detection of the Weld Bead Based on Online Vision Inspection. IEEE Trans. Instrum. Meas. 2010, 59, 1841–1849. [Google Scholar] [CrossRef]
- Shi, F.; Lin, T.; Chen, S. Efficient weld seam detection for robotic welding based on local image processing. Ind. Robot. Int. J. 2009, 36, 277–283. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Huang, Y.; Wu, D.; Chen, S. Parameter Self-Optimizing Clustering for Autonomous Extraction of the Weld Seam Based on Orientation Saliency in Robotic MAG Welding. J. Intell. Robot. Syst. 2016, 83, 219–237. [Google Scholar] [CrossRef]
- Mohd Shah, H.N.; Sulaiman, M.; Shukor, A.Z. Autonomous detection and identification of weld seam path shape position. Int. J. Adv. Manuf. Technol. 2017, 92, 3739–3747. [Google Scholar] [CrossRef]
- Liang, D.; Wu, Y.; Hu, K.; Bu, J.J.; Liang, D.T.; Feng, Y.F.; Qiang, J. Weld seam track identification for industrial robot based on illumination correction and center point extraction. J. Adv. Mech. Des. Syst. Manuf. 2022, 16, JAMDSM0028. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Yang, Z.; Mo, X.; Wu, Z.; Tang, W.; Duan, J.; Zou, X. Detection and counting of banana bunches by integrating deep learning and classic image-processing algorithms. Comput. Electron. Agric. 2023, 209, 107827. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, Z.; Chen, Z.; Chen, M.; Zhou, H.; Zhang, H.; Sun, J. Novel visual crack width measurement based on backbone double-scale features for improved detection automation. Eng. Struct. 2023, 274, 115158. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Peng, J. An Automatic Detection and Identification Method of Welded Joints Based on Deep Neural Network. IEEE Access 2019, 7, 164952–164961. [Google Scholar] [CrossRef]
- Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. Automatic Detection and Location of Weld Beads with Deep Convolutional Neural Networks. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Zhang, F.; Xu, P.; Li, L.; Li, B. Design and analysis of welding inspection robot. Sci. Rep. 2022, 12, 22651. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Dong, L.; Wang, X.; Tian, M. Weld Seam Identification and Tracking of Inspection Robot Based on Deep Learning Network. Drones 2022, 6, 216. [Google Scholar] [CrossRef]
- Available online: https://www.kaggle.com/datasets/engineeringubu/fsw-aa5083-aa5061 (accessed on 20 May 2023).
- Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.Y.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2918–2928. [Google Scholar] [CrossRef]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 801–818. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, Munich, Germany, 5–9 October 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar] [CrossRef] [Green Version]
Materials | Trademark | Remanence Induction Intensity (mT) | Shape Parameter (mm) | Coercivity (kA/m) | Innate Coercivity (kA/m) | Maximum Magnetic Energy (kJ/m3) |
---|---|---|---|---|---|---|
NdFeB | N52 | 1430–1480 | >796 | >876 | 398–422 | |
NdFeB | N52 | 1430–1480 | >796 | >876 | 398–422 |
Symbols | Meanings | Unit | Quantitative Values |
---|---|---|---|
Self-weight | Kg | 1.70 | |
Maximum payload | Kg | 1.96 | |
Maximum velocity | m/s | 0.2 | |
Adsorption force | N | 366.12 | |
Obstacle surmounting height | Mm | 11 | |
Working time | Min | 100 |
Models | mIOU/% | PA/% | GFLOPs/M | Weight/Mb | FPS | Time/ms |
---|---|---|---|---|---|---|
Pspnet | 89.80 | 98.30 | 53.6 | 175 | 17 | 59 |
U-net | 88.80 | 98 | 88.1 | 229 | 14 | 70 |
DeepLabv3+ | 87.90 | 97.10 | 38.8 | 308 | 18 | 53 |
Ours | 91.10 | 98.50 | 3.3 | 21.8 | 21 | 47 |
Model | Data | Mistake Fitting | Current Fitting | Time | FPS |
---|---|---|---|---|---|
Improve model | 300 | 30 | 270 | 71 ms | 14 |
Models | CBAM | Mobilenetv2 | Conv | PA | GFLOPs | Weight | FPS | Time |
---|---|---|---|---|---|---|---|---|
model1 | 97.1% | 38.8 | 308 Mb | 18 | 54 ms | |||
model2 | √ | 98.7% | 38.8 | 308 Mb | 17 | 57 ms | ||
model3 | √ | √ | 98.7% | 14.6 | 44.6 Mb | 19 | 53 ms | |
model4 | √ | √ | √ | 98.5% | 3.3 | 21.8 Mb | 21 | 47 ms |
Experiments | PA/% | mIOU/% | Loss |
---|---|---|---|
Model trained using image data set without data augmentation | 96.7 | 87.9 | 0.096 |
Model trained using image data set with data augmentation | 97.1 | 87.9 | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Huang, L.; Yao, J.; Liu, M.; Du, Y.; Zhao, M.; Su, Y.; Lu, D. Weld Seam Tracking and Detection Robot Based on Artificial Intelligence Technology. Sensors 2023, 23, 6725. https://doi.org/10.3390/s23156725
Wang J, Huang L, Yao J, Liu M, Du Y, Zhao M, Su Y, Lu D. Weld Seam Tracking and Detection Robot Based on Artificial Intelligence Technology. Sensors. 2023; 23(15):6725. https://doi.org/10.3390/s23156725
Chicago/Turabian StyleWang, Jiuxin, Lei Huang, Jiahui Yao, Man Liu, Yurong Du, Minghu Zhao, Yaoheng Su, and Dingze Lu. 2023. "Weld Seam Tracking and Detection Robot Based on Artificial Intelligence Technology" Sensors 23, no. 15: 6725. https://doi.org/10.3390/s23156725
APA StyleWang, J., Huang, L., Yao, J., Liu, M., Du, Y., Zhao, M., Su, Y., & Lu, D. (2023). Weld Seam Tracking and Detection Robot Based on Artificial Intelligence Technology. Sensors, 23(15), 6725. https://doi.org/10.3390/s23156725