Robust Resource Control Based on AP Selection in 6G-Enabled IoT Networks
Abstract
:1. Introduction
1.1. IoT and 6G: Background and Motivation
1.2. Emerging 6G Technologies and Their Limitations
1.3. Related Work
1.4. Contributions and Outcomes
- A dynamic cell-free framework is presented for the 6G-powered communication model, where a large number of APs cooperate to serve the IoT nodes. In conventional systems, all APs serve all the nodes in the network, while in the proposed scenario, a set of APs serve a user node.
- To enable efficient resource utilization, an AP selection algorithm, PBAS, is proposed, which allocates a set of APs to each node. The selection of APs is based on the allocation of pilots to the nodes with minimum pilot interference at the AP.
- A spectral efficiency analysis is carried out with detailed mathematical formulations of the signal processing that is involved, which includes channel estimation and receive-combining. The system performance is evaluated for the achieved spectral efficiency for different user transmit powers at varied locations.
- The performance of optimal and scalable receive combiners is also discussed in terms of the achieved spectral efficiency.
- To validate the performance evaluation, the proposed system is also compared with the other two system models, one in which all APs serve a user and the other in which one AP serves one user.
2. System Model
2.1. Pilot Transmission and Channel Estimation
2.2. Data Transmission and Data Detection
3. AP Selection
PBAS Algorithm
Algorithm 1 PBAS Algorithm |
|
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5G | Sixth Generation |
6G | Sixth Generation |
IoT | Internet of Things |
AP | Access Points |
BS | Base Station |
MIMO | Multiple-Input–Multiple-Output |
IoE | Internet of Everything |
RF | Radio Frequency |
IoV | Internet of Vehicles |
TDD | Time Division Duplex |
CPU | Central Processing Unit |
IRS | Intelligent Reflecting Surfaces |
IIoT | Industrial IoT |
SWIPT | Simultaneous Wireless Information and Power Transfer |
IoUT | Internet of Underwater Things |
SE | Spectral Efficiency |
EE | Energy Efficiency |
SNR | Signal-to-Noise Ratio |
SINR | Signal-to-Noise-Plus-Interference ratio |
CSI | Channel State Information |
LSFD | Large-Scale Fading Decoding |
MR | Maximal Ratio |
PMMSE | Partial Minimum Mean Square Error |
PRZF | Partial Regularized Zero Forcing |
References
- Cheng, J.; Yuan, G.; Zhou, M.; Gao, S.; Liu, C.; Duan, H.; Zeng, Q. Accessibility Analysis and Modeling for IoV in an Urban Scene. IEEE Trans. Veh. Technol. 2020, 69, 4246–4256. [Google Scholar] [CrossRef]
- Ghubaish, A.; Salman, T.; Zolanvari, M.; Unal, D.; Al-Ali, A.; Jain, R. Recent Advances in the Internet-of-Medical-Things (IoMT) Systems Security. IEEE Internet Things J. 2021, 8, 8707–8718. [Google Scholar] [CrossRef]
- Ishaque, N.; Azam, M.A. Reliable Data Transmission Scheme for Perception Layer of Internet of Underwater Things (IoUT). IEEE Access 2022, 10, 968–980. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Parizi, R.M.; Dehghantanha, A.; Karimipour, H.; Srivastava, G.; Aledhari, M. Enabling Drones in the Internet of Things with Decentralized Blockchain-Based Security. IEEE Internet Things J. 2021, 8, 6406–6415. [Google Scholar] [CrossRef]
- Moya Osorio, D.P.; Ahmad, I.; Sánchez, J.D.V.; Gurtov, A.; Scholliers, J.; Kutila, M.; Porambage, P. Towards 6G-Enabled Internet of Vehicles: Security and Privacy. IEEE Open J. Commun. Soc. 2022, 3, 82–105. [Google Scholar] [CrossRef]
- Nekovee, M. Transformation from 5G for Verticals towards a 6G-enabled Internet of Verticals. In Proceedings of the 2022 14th International Conference on COMmunication Systems NETworkS (COMSNETS), Bangalore, India, 4–8 January 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Vaezi, M.; Azari, A.; Khosravirad, S.R.; Shirvanimoghaddam, M.; Azari, M.M.; Chasaki, D.; Popovski, P. Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road towards 6G. IEEE Commun. Surv. Tutor. 2022, 24, 1117–1174. [Google Scholar] [CrossRef]
- Zhang, J.; Björnson, E.; Matthaiou, M.; Ng, D.W.K.; Yang, H.; Love, D.J. Prospective Multiple Antenna Technologies for beyond 5G. IEEE J. Sel. Areas Commun. 2020, 38, 1637–1660. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, N.; Tang, J.; Wu, C.; Niyato, D.; Wong, K.K. IRS-Assisted Secure UAV Transmission via Joint Trajectory and Beamforming Design. IEEE Trans. Commun. 2022, 70, 1140–1152. [Google Scholar] [CrossRef]
- Taneja, A.; Rani, S.; Alhudhaif, A.; Koundal, D.; Gündüz, E.S. An optimized scheme for energy efficient wireless communication via intelligent reflecting surfaces. Expert Syst. Appl. 2022, 190, 116106. [Google Scholar] [CrossRef]
- Hua, B.; Ni, H.; Zhu, Q.; Wang, C.X.; Zhou, T.; Mao, K.; Bao, J.; Zhang, X. Channel Modeling for UAV-to-Ground Communications With Posture Variation and Fuselage Scattering Effect. IEEE Trans. Commun. 2023, 71, 3103–3116. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, Z.; Mao, K.; Chen, X.; Liu, W.; Wu, Q. A Real-Time Hardware Emulator for 3D Non-Stationary U2V Channels. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 3951–3964. [Google Scholar] [CrossRef]
- Jain, I.K.; Kumar, R.; Panwar, S.S. The Impact of Mobile Blockers on Millimeter Wave Cellular Systems. IEEE J. Sel. Areas Commun. 2019, 37, 854–868. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dai, L.; Li, X.; Liu, Y.; Hanzo, L. On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems. IEEE Commun. Mag. 2018, 56, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.S.; Kibria, M.G.; Villardi, G.P.; Zhao, O.; Ishizu, K.; Kojima, F. Coordinated Multi-Point Downlink Transmission for Dense Small Cell Networks. IEEE Trans. Veh. Technol. 2019, 68, 431–441. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H.H.; Quek, T.Q.S.; Lee, J. Heterogeneous Cellular Networks with LoS and NLoS Transmissions—The Role of Massive MIMO and Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 7996–8010. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Found. Trends® Signal Process. 2017, 11, 154–655. [Google Scholar] [CrossRef]
- Björnson, E.; Sanguinetti, L.; Wymeersch, H.; Hoydis, J.; Marzetta, T.L. Massive MIMO is a reality—What is next?: Five promising research directions for antenna arrays. Digit. Signal Process. 2019, 94, 3–20. [Google Scholar] [CrossRef]
- Sanguinetti, L.; Björnson, E.; Hoydis, J. Toward Massive MIMO 2.0: Understanding Spatial Correlation, Interference Suppression, and Pilot Contamination. IEEE Trans. Commun. 2020, 68, 232–257. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, S.; Lin, Y.; Zheng, J.; Ai, B.; Hanzo, L. Cell-Free Massive MIMO: A New Next-Generation Paradigm. IEEE Access 2019, 7, 99878–99888. [Google Scholar] [CrossRef]
- Buzzi, S.; D’Andrea, C.; Zappone, A.; D’Elia, C. User-Centric 5G Cellular Networks: Resource Allocation and Comparison with the Cell-Free Massive MIMO Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Ammar, H.A.; Adve, R.; Shahbazpanahi, S.; Boudreau, G.; Srinivas, K.V. User-Centric Cell-Free Massive MIMO Networks: A Survey of Opportunities, Challenges and Solutions. IEEE Commun. Surv. Tutor. 2022, 24, 611–652. [Google Scholar] [CrossRef]
- Balachandran, K.; Kang, J.H.; Karakayali, K.M.; Rege, K.M. Network-centric cooperation schemes for uplink interference management in cellular networks. Bell Labs Tech. J. 2013, 18, 23–36. [Google Scholar] [CrossRef]
- Lee, B.M. Energy-Efficient Operation of Massive MIMO in Industrial Internet-of-Things Networks. IEEE Internet Things J. 2021, 8, 7252–7269. [Google Scholar] [CrossRef]
- Lee, B.M. Massive MIMO with Downlink Energy Efficiency Operation in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 17, 4669–4680. [Google Scholar] [CrossRef]
- Lee, B.M.; Yang, H. Massive MIMO with Massive Connectivity for Industrial Internet of Things. IEEE Trans. Ind. Electron. 2020, 67, 5187–5196. [Google Scholar] [CrossRef]
- Lee, B.M. Adaptive Switching Scheme for RS Overhead Reduction in Massive MIMO with Industrial Internet of Things. IEEE Internet Things J. 2021, 8, 2585–2602. [Google Scholar] [CrossRef]
- Peng, M.; Sun, Y.; Li, X.; Mao, Z.; Wang, C. Recent Advances in Cloud Radio Access Networks: System Architectures, Key Techniques, and Open Issues. IEEE Commun. Surv. Tutor. 2016, 18, 2282–2308. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef] [Green Version]
- Mai, T.C.; Ngo, H.Q.; Duong, T.Q. Downlink Spectral Efficiency of Cell-Free Massive MIMO Systems With Multi-Antenna Users. IEEE Trans. Commun. 2020, 68, 4803–4815. [Google Scholar] [CrossRef]
- Burr, A.; Islam, S.; Zhao, J.; Bashar, M. Cell-free Massive MIMO with multi-antenna access points and user terminals. In Proceedings of the 2020 54th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 1–5 November 2020; pp. 821–825. [Google Scholar] [CrossRef]
- Mai, T.C.; Quoc Ngo, H.; Duong, T.Q. CELL-FREE MASSIVE MIMO SYSTEMS WITH MULTI-ANTENNA USERS. In Proceedings of the 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Anaheim, CA, USA, 26–28 November 2018; pp. 828–832. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Jin, Y.; Ai, B. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO. China Commun. 2020, 17, 92–109. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, W.; Zhao, H.; Xu, W.; Wong, K.K.; Yang, L. Cell-Free IoT Networks with SWIPT: Performance Analysis and Power Control. IEEE Internet Things J. 2022, 9, 13780–13793. [Google Scholar] [CrossRef]
- Attarifar, M.; Abbasfar, A.; Lozano, A. Modified Conjugate Beamforming for Cell-Free Massive MIMO. IEEE Wirel. Commun. Lett. 2019, 8, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Marzetta, T.L. Energy Efficiency of Massive MIMO: Cell-Free vs. Cellular. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, J.; Fang, J. Grant-Free Massive Connectivity in Massive MIMO Systems: Collocated Versus Cell-Free. IEEE Wirel. Commun. Lett. 2021, 10, 634–638. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, M.; Zhao, H.; Yang, L.; Zhu, H. Spectral efficiency of superimposed pilots in cell-free massive MIMO systems with hardware impairments. China Commun. 2021, 18, 146–161. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A.; Björnson, E.; Kourtessis, P.; Chatzinotas, S.; Senior, J.M. Scalable Cell-Free Massive MIMO Systems: Impact of Hardware Impairments. IEEE Trans. Veh. Technol. 2021, 70, 9701–9715. [Google Scholar] [CrossRef]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Rao, B.D. Performance of cell-free massive MIMO systems with MMSE and LSFD receivers. In Proceedings of the 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 6–9 November 2016; pp. 203–207. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Sanguinetti, L. A New Look at Cell-Free Massive MIMO: Making It Practical With Dynamic Cooperation. In Proceedings of the 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul, Turkey, 8–11 September 2019; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive with MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Interdonato, G.; Karlsson, M.; Björnson, E.; Larsson, E.G. Local Partial Zero-Forcing Precoding for Cell-Free Massive MIMO. IEEE Trans. Wirel. Commun. 2020, 19, 4758–4774. [Google Scholar] [CrossRef] [Green Version]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H.; Rao, B.D. Precoding and Power Optimization in Cell-Free Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 4445–4459. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Tataria, H.; Matthaiou, M.; Jin, S.; Larsson, E.G. On the Performance of Cell-Free Massive MIMO in Ricean Fading. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 980–984. [Google Scholar] [CrossRef] [Green Version]
- Ozdogan, O.; Bjornson, E.; Zhang, J. Performance of Cell-Free Massive MIMO With Rician Fading and Phase Shifts. IEEE Trans. Wirel. Commun. 2019, 18, 5299–5315. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Zhang, J.; Bjornson, E.; Chen, S.; Zhong, Z. Performance Analysis of Cell-Free Massive MIMO Over Spatially Correlated Fading Channels. In Proceedings of the ICC 2019—2019 IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Ganesan, U.K.; Björnson, E.; Larsson, E.G. Clustering-Based Activity Detection Algorithms for Grant-Free Random Access in Cell-Free Massive MIMO. IEEE Trans. Commun. 2021, 69, 7520–7530. [Google Scholar] [CrossRef]
- Yan, H.; Ashikhmin, A.; Yang, H. A Scalable and Energy-Efficient IoT System Supported by Cell-Free Massive MIMO. IEEE Internet Things J. 2021, 8, 14705–14718. [Google Scholar] [CrossRef]
- Guenach, M.; Gorji, A.A.; Bourdoux, A. Joint Power Control and Access Point Scheduling in Fronthaul-Constrained Uplink Cell-Free Massive MIMO Systems. IEEE Trans. Commun. 2021, 69, 2709–2722. [Google Scholar] [CrossRef]
- Ando, K.; Iimori, H.; Takahashi, T.; Ishibashi, K.; De Abreu, G.T.F. Uplink Signal Detection for Scalable Cell-Free Massive MIMO Systems with Robustness to Rate-Limited Fronthaul. IEEE Access 2021, 9, 102770–102782. [Google Scholar] [CrossRef]
- 3GPP. Further Advancements for E-UTRA Physical Layer Aspects (Release 9). 3GPP Technical Specification 36.814.. 2017. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2493 (accessed on 20 May 2023).
- Jung, S.; Hong, S.E.; Na, J.H. Access Point Selection Schemes for Cell-free Massive MIMO UDN Systems. In Proceedings of the 2022 13th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 1601–1603. [Google Scholar] [CrossRef]
- Dao, H.T.; Kim, S. Effective Channel Gain-Based Access Point Selection in Cell-Free Massive MIMO Systems. IEEE Access 2020, 8, 108127–108132. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
N | 100 | 10 | |
M | 4 | 10 m | |
K | 40 | 100 mW | |
B | 20 MHz | dBm | |
2 ms | 100 kHz | ||
200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taneja, A.; Alqahtani, A.; Saluja, N.; Alqahtani, N. Robust Resource Control Based on AP Selection in 6G-Enabled IoT Networks. Sensors 2023, 23, 6788. https://doi.org/10.3390/s23156788
Taneja A, Alqahtani A, Saluja N, Alqahtani N. Robust Resource Control Based on AP Selection in 6G-Enabled IoT Networks. Sensors. 2023; 23(15):6788. https://doi.org/10.3390/s23156788
Chicago/Turabian StyleTaneja, Ashu, Ali Alqahtani, Nitin Saluja, and Nayef Alqahtani. 2023. "Robust Resource Control Based on AP Selection in 6G-Enabled IoT Networks" Sensors 23, no. 15: 6788. https://doi.org/10.3390/s23156788
APA StyleTaneja, A., Alqahtani, A., Saluja, N., & Alqahtani, N. (2023). Robust Resource Control Based on AP Selection in 6G-Enabled IoT Networks. Sensors, 23(15), 6788. https://doi.org/10.3390/s23156788