Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges
Abstract
:1. Introduction
2. Methods
3. Numerical Simulations and Experimental Studies
3.1. Transducer and Acoustic lens
3.2. Focused Acoustic Fields
3.3. Focused Acoustic Vortex Fields
3.4. Acoustic Gradient Forces
3.5. Temperature Fields of FAVs
3.6. Temperature Distributions of the Focal Region
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, D.; O’Callaghan, J. New horizons for focused ultrasound (FUS)-therapeutic applications in neurodegenerative diseases. Metab. Clin. Exp. 2017, 69, S3–S7. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Kono, K.; Takagishi, T. Temperature-dependent associating property of liposomes modified with a thermosensitive polymer. Bioconjug Chem. 1998, 9, 382–389. [Google Scholar] [CrossRef]
- Kono, K.; Yoshino, K.; Takagishi, T. Effect of poly (ethylene glycol) grafts on temperature-sensitivity of thermosensitive polymermodified liposomes. J. Control. Release 2002, 80, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Paasonen, L.; Romberg, B.; Storm, G.; Yliperttula, M.; Urtti, A.; Hennink, W. Temperature-sensitive poly (N-(2-hydroxypropyl) methacrylamide mono/dilactate)-coated liposomes for triggered contents release. Bioconjug Chem. 2007, 18, 2131–2136. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, L. HIFU is effective for unresectable HCC. Nat. Rev. Clin. Oncol. 2011, 8, 385. [Google Scholar] [CrossRef]
- Kennedy, J. High-intensity focused ultrasound in the treatment of solid tumours. Nat. Rev. Cancer 2005, 5, 321–327. [Google Scholar] [CrossRef]
- Gavrilov, L. High Intensity Focused Ultrasound in Medicine. J. Acoust. Soc. Am. 2013, 133, 4348–4349. [Google Scholar]
- Lee, J.; Teh, S.; Lee, A.; Kim, H.; Lee, C.; Shung, K. Single beam acoustic trapping. Appl. Phys. Lett. 2009, 95, 73701. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Li, Y.; Lin, M.; Yoon, C.; Lee, C.; Jung, H.; Shung, K. Calibration of Trapping Force on Cell-Size Objects from Ultrahigh-Frequency Single-Beam Acoustic Tweezer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1988–1995. [Google Scholar] [CrossRef]
- Takatori, S.; Dier, R.; Vermant, J. Acoustic trapping of active matter. Nat. Commun. 2016, 7, 10694. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, X.; Mao, Y.; Zhu, Y.; Yang, Z.; Chan, C.; Sheng, P. Locally resonant sonic materials. Science 2000, 289, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Qiu, C.; Ke, M.; Liu, Z. Valley Vortex States in Sonic Crystals. Phys. Rev. Lett. 2016, 116, 093901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Z.; Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 2012, 108, 114301. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhou, C.; Yuan, B.; Wu, D.; Wei, Q.; Liu, X. Ultra-sparse metasurface for high reflection of low-frequency acoustic based on artificial Mie resonances. Nat. Mater. 2015, 14, 1013–1019. [Google Scholar] [CrossRef]
- Zigoneanu, L.; Popa, B.; Cummer, S. Design and measurements of a broadband two-dimensional acoustic lens. Phys. Rev. B 2011, 84, 3214–3219. [Google Scholar] [CrossRef] [Green Version]
- Donahue, C.; Anzel, P.; Bonanomi, L. Experimental realization of a nonlinear acoustic lens with a tunable focus. Appl. Phys. Lett. 2014, 104, 909. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Marchiano, R. Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices. Phys. Rev. Lett. 2003, 91, 244302. [Google Scholar] [CrossRef]
- Bliokh, K.; Freilikher, V. Polarization transport of transverse acoustic waves: Berry phase and spin Hall effect of phonons. Phys. Rev. B 2006, 74, 174302. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185. [Google Scholar] [CrossRef]
- Skeldon, K.; Wilson, C.; Edgar, M.; Padgett, M. An acoustic spanner and its associated rotational Doppler shift. New J. Phys. 2008, 10, 013018. [Google Scholar] [CrossRef]
- Kang, S.; Yeh, C. Potential-Well Model in Acoustic Tweezers. IEEE Trans. Ultrason. Ferr. 2010, 57, 1451–1459. [Google Scholar] [CrossRef]
- Yang, L.; Ma, Q.; Tu, J.; Zhang, D. Phase-coded approach for controllable generation of acoustical vortices. J. Appl. Phys. 2013, 113, 154904. [Google Scholar] [CrossRef]
- Zheng, H.; Gao, L.; Ma, Q.; Zhang, D. Pressure distribution based optimization of phase-coded acoustical vortices. J. Appl. Phys. 2014, 115, 084909. [Google Scholar] [CrossRef]
- Gao, L.; Zheng, H.; Ma, Q.; Tu, J.; Zhang, D. Linear phase distribution of acoustical vortices. J. Appl. Phys. 2014, 116, 024905. [Google Scholar] [CrossRef]
- Li, Y.; Guo, G.; Ma, Q.; Tu, J.; Zhang, D. Deep-level stereoscopic multiple traps of acoustic vortices. J. Appl. Phys. 2017, 121, 164901. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Ma, Q.; Guo, G.; Tu, J.; Zhang, D. Near-field multiple traps of paraxial acoustic vortices with strengthened, gradient force generated by sector transducer array. J. Appl. Phys. 2018, 123, 034901. [Google Scholar] [CrossRef]
- Baresch, D.; Thomas, J.; Marchiano, R. Spherical vortex beams of high radial degree for enhanced single-beam tweezers. J. Appl. Phys. 2013, 113, 184901. [Google Scholar] [CrossRef]
- Cheng, J. Fundamentals of Acoustics; Nanjing Publishing House: Nanjing, China, 2012; pp. 173–176. [Google Scholar]
- Jürg, D.; Hahn, P.; Leibacher, I.; Möller, D.; Schwarz, T.; Wang, J. Acoustofluidics 19: Ultrasonic microrobotics in cavities: Devices and numerical simulation. Lab Chip 2012, 12, 4010–4021. [Google Scholar]
- Wijaya, F.; Lim, K.M. Numerical calculation of acoustic radiation force and torque on non-spherical particles in Bessel beams. J. Acoust. Soc. Am. 2016, 139, 2071. [Google Scholar] [CrossRef]
- Bailey, M.; Khokhlova, V.; Sapozhnikov, O. Physical mechanisms of the therapeutic effect of ultraacoustic (a review). Acoust. Phys. 2003, 49, 369–388. [Google Scholar] [CrossRef]
- Pennes, H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948, 85, 93–122. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, L.; Hu, G.; Hu, Y.; Wang, Q. Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges. Sensors 2023, 23, 6874. https://doi.org/10.3390/s23156874
Du L, Hu G, Hu Y, Wang Q. Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges. Sensors. 2023; 23(15):6874. https://doi.org/10.3390/s23156874
Chicago/Turabian StyleDu, Libin, Gehao Hu, Yantao Hu, and Qingdong Wang. 2023. "Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges" Sensors 23, no. 15: 6874. https://doi.org/10.3390/s23156874
APA StyleDu, L., Hu, G., Hu, Y., & Wang, Q. (2023). Acoustic Forceps Based on Focused Acoustic Vortices with Different Topological Charges. Sensors, 23(15), 6874. https://doi.org/10.3390/s23156874