Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects
Abstract
:1. Introduction
2. Background
2.1. Chronic Heart Failure
2.1.1. What Is It?
2.1.2. How Is It Diagnosed?
2.1.3. How Is It Related to Other Cardiovascular Diseases?
2.1.4. Technology in Chronic Heart Failure and Cardiovascular Medicine
- Identifying risk conditions by predicting health trends and acute events, thus enabling early warning and the early administration of treatment solutions;
- Providing personalized risk stratification, targeted therapies, and treatment solutions;
- Analysing chronic disease trajectories and response to administered therapies to provide recommendations for therapy adjustments;
- Optimizing hospital administration and scheduling systems;
- Optimizing surgical procedures;
- Optimizing pharmacological interventions;
- Improving doctor and patient communication.
3. Related Works
4. Research Methodology and Contributions
4.1. Research Questions
- RQ1:
- What role does edge AI play in wearable healthcare architectures for CHF management?This question aims to determine the purpose for which edge AI is implemented in wearables used in CHF-prevention and -management architectures.
- RQ2:
- How is edge intelligence applied in wearable-based intelligent healthcare architectures supporting CHF diagnosis, prevention, and management?This question provides an overview of existing edge AI methods and techniques that have been thus far adopted for CHF management, diagnosis, and prevention frameworks.
- RQ3:
- How can edge AI contribute to developing interactive patient-centric solutions?This question demonstrates how users interact with intelligent systems containing wearables and edge AI technologies and the user services they offer.
- RQ4:
- How do wearables and edge AI technologies affect the role of medical practitioners in chronic heart failure patient treatment and management?This question highlights the clinical significance of wearable and edge AI technologies in technologies applied to the CHF context. This question also aims to determine if existing works provide solutions to empirically quantify the contribution of the implemented edge intelligence solutions to the overall CHF-prevention, -management, or -diagnosis technology solutions. The goal is to provide insight into how the effect of these innovative technologies on patients and medical practitioners is evaluated and quantified.
4.2. Information Sources
4.3. Inclusion and Exclusion Criteria
- Wearable sensing devices;
- Edge AI;
- Chronic heart failure.
Listing 1. Search Query. |
(Edge OR on-device OR distributed OR embedded OR constrained OR tiny OR FOG OR Mist) AND (``artificial intelligence’’ OR intelligence OR {AI} OR ``machine learning’’ OR {ML} OR ``deep learning’’) )AND (``wear *’’ OR worn) AND( (``cardi*’’ OR ``heart*’’ OR ``heart failure’’ OR ``chronic heart failure’’) OR (``hospit*’’)) |
5. Results
5.1. Application Scenarios
5.2. Deploying AI in Wearables
5.2.1. Model Compression and Transformation
5.2.2. Signal Conversion, Algorithm Design, and Modification
Ref. | Model | Modification |
---|---|---|
[59] | KecNet-CNN based model | Domain knowledge-optimized 1st CNN layer merged with parallel ECG quantitative features based on clinical knowledge |
[64] | Tenary neural network (TNN) | ECG sequences converted to binary images |
[6] | 2D-CNN | ECG signals converted to scalograms |
[51] | 2D-CNN | ECG sequences converted to binary images |
[63] | Fussing transformer | Decoder eliminated-modified input embedding (CNN architecture) and replaced self-attention with a depth-wise convolution |
[79] | CNN | Partitioned layers-First 2 layers in the wearable device-Last 3 layers in cloud |
5.2.3. Deployed As-Is
5.2.4. Neural Architecture Search
5.2.5. Automated AI deployment
5.3. Datasets
Ref | Datasets |
---|---|
[64] | MIT-BIH Creighton University database. Reducing false alarms in ICU-PhysioNet/Computing in Cardiology Challenge 2015 dataset-G. Clifford et al. |
[2] | MIT -BIH Atrial fibrillation database + Machine Learning Repository at University of California |
[5] | MIT-BIH |
[6] | MIT-BIH |
[3] | MIT-BIH Arrhythmia dataset |
[51] | MIT-BIH |
[57] | MIT-BIH Arrhythmia database |
[65] | MIT-BIH |
[30] | PPG type 4 |
[49] | CinC2017–2017 Computation in Cardiology Challenge |
[82] | MIT-BIH ECG dataset CU ventricular arrhythmia data set |
[53] | Korea University Anam Hospital in Seoul, Korea, |
[68] | Creighton University ventricular tachycardia database (CUDB) MIT-BIH Malignant ventricular arrhythmia database (VFDB) |
[66] | 2017 Computation in Cardiology Challenge |
[55] | MIT-BIH ECG arrhythmia database |
[61] | ECG5000 |
[47] | MIT-BIH Atrial Fibrillation DataBase Computing in Cardiology Challenge 2017 Database Ventricular fibrillation database |
[70] | MIMIC-III Waveform Database from PhysioNet |
[63] | Personalized database, CPSC2020, and MIT-BIH |
[60] | MIT-BIH dataset |
[52] | ECG5000 |
[62] | “BIDMC Congestive Heart Failure Database” |
[85] | Unspecified ppg database |
[80] | MIT-BIH |
[67] | Privately collected dataset (training) Public China Physiological Signal Challenge (CPSC 2018) dataset (verification) |
[59] | MIT-BIH arrhythmia (MITD-AR) QT database (QTDB) |
[48] | MIT-BIH |
[58] | MIT-BIH arrhythmia |
[50] | Physiobank-PTB diagnostic ECG database |
[56] | MIT-BIH arrhythmia (MITD-AR) QT database (QTDB) |
5.4. Interactive Services
- Devices that are easy to use.
- Instruments that facilitate efficient communication between doctor and patient, i.e., easy-to-read data visualization instruments.
- Frameworks with combined biosensors and patient medical history.
6. Discussion and Research Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFib | Atrial fibrillation |
AI | Artificial intelligence |
ALQ | Adaptive loss-aware quantization |
API | Application program interface |
ASIC | Application-specific integrated circuit |
BNP | B-type natriuretic peptide |
BSV | Biore-sorbable vascular scaffolds |
CAD | Coronary artery disease |
CHF | Chronic heart failure |
CNN | Convolutional neural network |
CT | Computed tomography |
CV | Cardiovascular |
CVD | Cardiovascular disease |
DL | Deep learning |
DCNN | Deep convolutional neural network |
DNN | Deep neural network |
ECG | Electrocardiogram |
EMR | Electronic medical records |
LSTM | Long short-term memory |
LVEF | Left ventricular ejection fraction |
MI | Myocardial infarction |
ML | Machine learning |
MPI | Myocardial perfusion imaging |
NN | Neural network |
P4 | Predictive, preventive, personalized, and participatory |
PAC | Premature atria contraction |
PPG | Photopletysmogram |
PSVT | Paroxysmal supraventricular tachycardia |
RMS | Root mean square |
SoC | System on chip |
TCN | Temporal convolutional network |
TFLite | Tensor flow lite |
TNN | Tenary neural network |
References
- Ramani, G.V.; Uber, P.A.; Mehra, M.R. Chronic Heart Failure: Contemporary Diagnosis and Management. Mayo Clin. Proc. 2010, 85, 180–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhenguel, R.; Mahgoub, I. A risk and Incidence Based Atrial Fibrillation Detection Scheme for wearable healthcare computing devices. In Proceedings of the 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, San Diego, CA, USA, 21–24 May 2012; pp. 97–104. [Google Scholar] [CrossRef]
- Scrugli, M.; Loi, D.; Raffo, L.; Meloni, P. An Adaptive Cognitive Sensor Node for ECG Monitoring in the Internet of Medical Things. IEEE Access 2022, 10, 1688–1705. [Google Scholar] [CrossRef]
- Al-Hadithi, A.B.; Boyle, N.G. A Clinical Review of Ventricular Arrhythmias in Patients with Congestive Heart Failure. EMJ Cardiol. 2019. [Google Scholar] [CrossRef]
- Tiwari, S.; Jain, A.; Sapra, V.; Koundal, D.; Alenezi, F.; Polat, K.; Alhudhaif, A.; Nour, M. A smart decision support system to diagnose arrhythymia using ensembled ConvNet and ConvNet-LSTM model. Expert Syst. Appl. 2023, 213, 118933. [Google Scholar] [CrossRef]
- Bhattarai, A.; Peng, D.; Payne, J.; Sharif, H. Adaptive Partition of ECG Diagnosis Between Cloud and Wearable Sensor Net Using Open-Loop and Closed-Loop Switch Mode. IEEE Access 2022, 10, 63684–63697. [Google Scholar] [CrossRef]
- Wu, F.; Li, X.; Sangaiah, A.K.; Xu, L.; Kumari, S.; Wu, L.; Shen, J. A lightweight and robust two-factor authentication scheme for personalized healthcare systems using wireless medical sensor networks. Future Gener. Comput. Syst. 2018, 82, 727–737. [Google Scholar] [CrossRef]
- Adikari, A.; de Silva, D.; Moraliyage, H.; Alahakoon, D.; Wong, J.; Gancarz, M.; Chackochan, S.; Park, B.; Heo, R.; Leung, Y. Empathic conversational agents for real-time monitoring and co-facilitation of patient-centered healthcare. Future Gener. Comput. Syst. 2022, 126, 318–329. [Google Scholar] [CrossRef]
- Su, X.; An, L.; Cheng, Z.; Weng, Y. Cloud–edge collaboration-based bi-level optimal scheduling for intelligent healthcare systems. Future Gener. Comput. Syst. 2023, 141, 28–39. [Google Scholar] [CrossRef]
- Tarakji, K.; Silva, J.; Chen, L.; Turakhia, M.; Perez, M.; Attia, Z.; Passman, R.; Boissy, A.; Cho, D.; Majmudar, M.; et al. Digital Health and the Care of the Patient with Arrhythmia: What Every Electrophysiologist Needs to Know. Circ. Arrhythmia Electrophysiol. 2020, 13, e007953. [Google Scholar] [CrossRef]
- Miller, D. Machine Intelligence in Cardiovascular Medicine. Cardiol. Rev. 2020, 28, 53–64. [Google Scholar] [CrossRef]
- Aledhari, M.; Razzak, R.; Qolomany, B.; Al-Fuqaha, A.; Saeed, F. Biomedical IoT: Enabling Technologies, Architectural Elements, Challenges, and Future Directions. IEEE Access 2022, 10, 31306–31339. [Google Scholar] [CrossRef]
- Kim, B.; Ghasemi, P.; Stolee, P.; Lee, J. Clinicians and Older Adults’ Perceptions of the Utility of Patient-Generated Health Data in Caring for Older Adults: Exploratory Mixed Methods Study. JMIR Aging 2021, 4, e29788. [Google Scholar] [CrossRef] [PubMed]
- Merenda, M.; Porcaro, C.; Iero, D. Edge machine learning for ai-enabled iot devices: A review. Sensors 2020, 20, 2533. [Google Scholar] [CrossRef] [PubMed]
- Akrivopoulos, O.; Amaxilatis, D.; Mavrommati, I.; Chatzigiannakis, I. Utilising fog computing for developing a person-centric heart monitoring system. J. Ambient. Intell. Smart Environ. 2019, 11, 237–259. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Caraballo, C.; Desai, N.R.; Mulder, H.; Alhanti, B.; Wilson, F.P.; Fiuzat, M.; Felker, G.M.; Piña, I.L.; O’Connor, C.M.; Lindenfeld, J.; et al. Clinical implications of the New York Heart Association classification. J. Am. Heart Assoc. 2019, 8, e014240. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the heart failure society of America, heart failure association of the European society of cardiology, Japanese heart failure society and writing committee of the universal definition of heart failure. J. Card. Fail. 2021, 27, 387–413. [Google Scholar]
- Mant, J.; Doust, J.; Roalfe, A.; Barton, P.; Cowie, M.R.; Glasziou, P.; Mant, D.; McManus, R.J.; Holder, R.; Deeks, J.; et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol. Assess. 2009, 13, 32. [Google Scholar] [CrossRef] [Green Version]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef] [Green Version]
- Lawson, C.A.; Solis-Trapala, I.; Dahlstrom, U.; Mamas, M.; Jaarsma, T.; Kadam, U.T.; Stromberg, A. Comorbidity health pathways in heart failure patients: A sequences-of-regressions analysis using cross-sectional data from 10,575 patients in the Swedish Heart Failure Registry. PLoS Med. 2018, 15, e1002540. [Google Scholar] [CrossRef] [PubMed]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, L.; Ritrovato, P.; Xhafa, F. An edge-stream computing infrastructure for real-time analysis of wearable sensors data. Future Gener. Comput. Syst. 2019, 93, 515–528. [Google Scholar] [CrossRef]
- Dao, N.N. Internet of wearable things: Advancements and benefits from 6G technologies. Future Gener. Comput. Syst. 2023, 138, 172–184. [Google Scholar] [CrossRef]
- Hoffmann, J.; Mahmood, S.; Fogou, P.S.; George, N.; Raha, S.; Safi, S.; Schmailzl, K.J.; Brandalero, M.; Hübner, M. A Survey on Machine Learning Approaches to ECG Processing. In Proceedings of the 2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), Poznan, Poland, 23–25 September 2020; pp. 36–41. [Google Scholar] [CrossRef]
- Banerjee, R.; Mukherjee, A.; Ghose, A. Noise Cleaning of ECG on Edge Device Using Convolutional Sparse Contractive Autoencoder. In Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022. [Google Scholar] [CrossRef]
- Sabbadini, R.; Riccio, M.; Maresca, L.; Irace, A.; Breglio, G. Atrial Fibrillation Detection by Means of Edge Computing on Wearable Device: A Feasibility Assessment. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022. [Google Scholar] [CrossRef]
- Noble, R.J.; Hillis, J.S.; Rothbaum, D.A. Electrocardiography; Butterworths: Boston, MA, USA, 1990; Chapter 3. [Google Scholar]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, V.; Connolly, J.P.; Condell, J.; McKelvey, N.; Gardiner, P. Review of Wearable Devices and Data Collection Considerations for Connected Health. Sensors 2021, 21, 5589. [Google Scholar] [CrossRef]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. Npj Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, B.; Das, P.; Patnaik, S. Healthcare 5.0: A Paradigm Shift in Digital Healthcare System Using Artificial Intelligence, IOT and 5G Communication. In Proceedings of the 2019 International Conference on Applied Machine Learning (ICAML), Bhubaneswar, India, 25–26 May 2019; pp. 191–196. [Google Scholar] [CrossRef]
- Chen, S.W.; Wang, S.L.; Qi, X.Z.; Samuri, S.M.; Yang, C. Review of ECG detection and classification based on deep learning: Coherent taxonomy, motivation, open challenges and recommendations. Biomed. Signal Process. Control 2022, 74, 103493. [Google Scholar] [CrossRef]
- Abbas, A.; Alroobaea, R.; Krichen, M.; Rubaiee, S.; Vimal, S.; Almansour, F.M. Blockchain-assisted secured data management framework for health information analysis based on Internet of Medical Things. Pers. Ubiquitous Comput. 2021. [Google Scholar] [CrossRef]
- Arul, R.; Al-Otaibi, Y.D.; Alnumay, W.S.; Tariq, U.; Shoaib, U.; Piran, M.D.J. Multi-modal secure healthcare data dissemination framework using blockchain in IoMT. Pers. Ubiquitous Comput. 2021. [Google Scholar] [CrossRef]
- Xie, Y.; Lu, L.; Gao, F.; He, S.J.; Zhao, H.J.; Fang, Y.; Yang, J.M.; An, Y.; Ye, Z.W.; Dong, Z. Integration of Artificial Intelligence, Blockchain, and Wearable Technology for Chronic Disease Management: A New Paradigm in Smart Healthcare. Curr. Med. Sci. 2021, 41, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic Mapping Studies in Software Engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering, Bari, Italy, 26–27 June 2008; Volume 17. [Google Scholar]
- Roehrs, A.; da Costa, C.A.; Righi, R.d.R.; de Oliveira, K.S.F. Personal Health Records: A Systematic Literature Review. J. Med. Internet Res. 2017, 19, e13. [Google Scholar] [CrossRef]
- Tawfik, G.M.; Dila, K.A.S.; Mohamed, M.Y.F.; Tam, D.N.H.; Kien, N.D.; Ahmed, A.M.; Huy, N.T. A step by step guide for conducting a systematic review and meta-analysis with simulation data. Trop. Med. Health 2019, 47, 46. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Ossom Williamson, P.; Minter, C.I.J. Exploring PubMed as a reliable resource for scholarly communications services. J. Med. Libr. Assoc. 2019, 107, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, R. A study of citations to STEM databases: ACM Digital Library, Engineering Village, IEEE Xplore, and MathSciNet. Scientometrics 2021, 126, 1797–1811. [Google Scholar]
- Polanin, J.R.; Pigott, T.D.; Espelage, D.L.; Grotpeter, J.K. Best practice guidelines for abstract screening large-evidence systematic reviews and meta-analyses. Res. Synth. Methods 2019, 10, 330–342. [Google Scholar] [CrossRef] [Green Version]
- Sideshwar, J.; Sachin Krishan, T.; Nagarajan, V.; Shanthakumar, S.; Vijayaraghavan, V. End-to-End Optimized Arrhythmia Detection Pipeline using Machine Learning for Ultra-Edge Devices. In Proceedings of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16 December 2021. [Google Scholar] [CrossRef]
- Saadatnejad, S.; Oveisi, M.; Hashemi, M. LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable Devices. IEEE J. Biomed. Health Inform. 2020, 24, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Faraone, A.; Sigurthorsdottir, H.; Delgado-Gonzalo, R. Atrial Fibrillation Detection on Low-Power Wearables using Knowledge Distillation. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Guadalajara, Mexico, 1–5 November 2021; Volume 2021, pp. 6795–6799. [Google Scholar]
- Sopic, D.; Aminifar, A.; Aminifar, A.; Atienza, D. Real-Time Event-Driven Classification Technique for Early Detection and Prevention of Myocardial Infarction on Wearable Systems. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 982–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, D.; Li, Y.; Deepu, J.; Ho, W.; Heng, C.H. An Energy Efficient ECG Ventricular Ectopic Beat Classifier Using Binarized CNN for edge AI Devices. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Shumba, A.T.; Montanaro, T.; Sergi, I.; Fachechi, L.; De Vittorio, M.; Patrono, L. Leveraging IoT-Aware Technologies and AI Techniques for Real-Time Critical Healthcare Applications. Sensors 2022, 22, 7675. [Google Scholar] [CrossRef]
- Lee, K.S.; Park, H.J.; Kim, J.; Kim, H.; Chon, S.; Kim, S.; Jang, J.; Kim, J.K.; Jang, S.; Gil, Y.; et al. Compressed Deep Learning to Classify Arrhythmia in an Embedded Wearable Device. Sensors 2022, 22, 1776. [Google Scholar] [CrossRef]
- Catalani, A.; Chatzigiannakis, I.; Anagnostopoulos, A.; Akrivopoulou, G.; Amaxilatis, D.; Antoniou, A. Hardware-assisted and Deep-Learning techniques for Low-Power Detection of Cardiovascular Abnormalities in Smart Wearables. In Proceedings of the 2021 IEEE International Conference on Smart Internet of Things (SmartIoT), Jeju, Republic of Korea, 13–15 August 2021. [Google Scholar] [CrossRef]
- Amirshahi, A.; Hashemi, M. ECG classification algorithm based on STDP and R-STDP neural networks for real-time monitoring on ultra low-power personal wearable devices. IEEE Trans. Biomed. Circuits Syst. 2021, 13, 1483–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabor, N.; Gendy, G.; Mohammed, H.; Wang, G.; Lian, Y. Robust Arrhythmia Classification Based On QRS Detection and a Compact 1D-CNN for Wearable ECG Devices. IEEE J. Biomed. Health Inform. 2022, 26, 5918–5929. [Google Scholar] [CrossRef]
- Wang, A.; Xu, W.; Sun, H.; Pu, N.; Liu, Z.; Liu, H. Arrhythmia Classifier using Binarized Convolutional Neural Network for Resource-Constrained Devices. In Proceedings of the 2022 4th International Conference on Communications, Information System and Computer Engineering (CISCE), Shenzhen, China, 27–29 May 2022. [Google Scholar] [CrossRef]
- Xiaolin, L.; Panicker, R.; Cardiff, B.; John, D. Multistage Pruning of CNN Based ECG Classifiers for Edge Devices. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021. [Google Scholar] [CrossRef]
- Lu, P.; Gao, Y.; Xi, H.; Zhang, Y.; Gao, C.; Zhou, B.; Zhang, H.; Chen, L.; Mao, X. KecNet: A Light Neural Network for Arrhythmia Classification Based on Knowledge Reinforcement. J. Healthc. Eng. 2021, 2021, 6684954. [Google Scholar] [CrossRef]
- Scirè, A.; Tropeano, F.; Anagnostopoulos, A.; Chatzigiannakis, I. Fog-computing-based heartbeat detection and arrhythmia classification using machine learning. Algorithms 2019, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Ingolfsson, T.; Hersche, X.; Burrello, A.; Cavigelli, L.; Benini, L. ECG-TCN: Wearable Cardiac Arrhythmia Detection with a Temporal Convolutional Network. In Proceedings of the 2021 IEEE 3rd International Conference on Artificial Intelligence Circuits and Systems (AICAS), Washington, DC, USA, 6–9 June 2021. [Google Scholar] [CrossRef]
- Ukil, A.; Sahu, I.; Majumdar, A.; Racha, S.C.; Kulkarni, G.; Choudhury, A.D.; Khandelwal, S.; Ghose, A.; Pal, A. Resource Constrained CVD Classification Using Single Lead ECG On Wearable and Implantable Devices. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021; pp. 886–889. [Google Scholar] [CrossRef]
- Meng, L.; Tan, W.; Ma, J.; Wang, R.; Yin, X.; Zhang, Y. Enhancing dynamic ECG heartbeat classification with lightweight transformer model. Artif. Intell. Med. 2022, 124, 102236. [Google Scholar] [CrossRef]
- Abubakar, S.M.; Yin, Y.; Tan, S.; Jiang, H.; Wang, Z. A 746 nW ECG Processor ASIC Based on Ternary Neural Network. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 703–713. [Google Scholar] [CrossRef]
- Sun, H.; Wang, A.; Pu, N.; Li, Z.; Huang, J.; Liu, H.; Qi, Z. Arrhythmia Classifier Using Convolutional Neural Network with Adaptive Loss-aware Multi-bit Networks Quantization. In Proceedings of the 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE), Hangzhou, China, 5–7 November 2021. [Google Scholar] [CrossRef]
- Faraone, A.; Delgado-Gonzalo, R. Convolutional-Recurrent Neural Networks on Low-Power Wearable Platforms for Cardiac Arrhythmia Detection. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 31 August–2 September 2020. [Google Scholar] [CrossRef] [Green Version]
- Ran, S.; Yang, X.; Liu, M.; Zhang, Y.; Cheng, C.; Zhu, H.; Yuan, Y. Homecare-Oriented ECG Diagnosis With Large-Scale Deep Neural Network for Continuous Monitoring on Embedded Devices. IEEE Trans. Instrum. Meas. 2022, 71, 2503113. [Google Scholar] [CrossRef]
- Mazumder, O.; Banerjee, R.; Roy, D.; Mukherjee, A.; Ghose, A.; Khandelwal, S.; Sinha, A. Computational Model for Therapy Optimization of Wearable Cardioverter Defibrillator: Shockable Rhythm Detection and Optimal Electrotherapy. Front. Physiol. 2021, 12, 787180. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zong, Y.; Chen, J.; Liu, W.; Lloret, J.; Mukherjee, M. A Deep Segmentation Network of Stent Structs Based on IoT for Interventional Cardiovascular Diagnosis. IEEE Wirel. Commun. 2021, 28, 36–43. [Google Scholar] [CrossRef]
- Lin, W.; Demirel, B.; Al Faruque, M.; Li, G. Energy-efficient Blood Pressure Monitoring based on Single-site Photoplethysmogram on Wearable Devices. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 1–5 November 2021. [Google Scholar] [CrossRef]
- Ademola, O.A.; Leier, M.; Petlenkov, E. Evaluation of Deep Neural Network Compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme. Sensors 2021, 21, 7529. [Google Scholar] [CrossRef]
- TensorFlow Lite Official Website. Available online: https://www.tensorflow.org/lite (accessed on 29 November 2022).
- Burrello, A.; Garofalo, A.; Bruschi, N.; Tagliavini, G.; Rossi, D.; Conti, F. DORY: Automatic End-to-End Deployment of Real-World DNNs on Low-Cost IoT MCUs. IEEE Trans. Comput. 2021, 70, 1253–1268. [Google Scholar] [CrossRef]
- GreenWaves Technologies Official Website. Available online: https://greenwaves-technologies.com/gapflow (accessed on 29 November 2022).
- Distillation and Pruning for GEC Model Compression. Available online: https://www.scribendi.ai/distillation-and-pruning-for-gec-model-compression (accessed on 29 November 2022).
- Alkhulaifi, A.; Alsahli, F.; Ahmad, I. Knowledge distillation in deep learning and its applications. PeerJ Comput. Sci. 2021, 7, e474. [Google Scholar] [CrossRef] [PubMed]
- Here’s Why Quantization Matters for AI. Available online: https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai (accessed on 29 November 2022).
- Cao, W.; Wang, X.; Ming, Z.; Gao, J. A review on neural networks with random weights. Neurocomputing 2018, 275, 278–287. [Google Scholar] [CrossRef]
- Parsa, M.; Panda, P.; Sen, S.; Roy, K. Staged Inference using Conditional Deep Learning for energy efficient real-time smart diagnosis. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017. [Google Scholar] [CrossRef]
- De Melo Ribeiro, H.; Arnold, A.; Howard, J.; Shun-Shin, M.; Zhang, Y.; Francis, D.; Lim, P.; Whinnett, Z.; Zolgharni, M. ECG-based real-time arrhythmia monitoring using quantized deep neural networks: A feasibility study. Comput. Biol. Med. 2022, 143, 105249. [Google Scholar] [CrossRef]
- Burrello, A.; Pagliari, D.J.; Risso, M.; Benatti, S.; Macii, E.; Benini, L.; Poncino, M. Q-PPG: Energy-Efficient PPG-Based Heart Rate Monitoring on Wearable Devices. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1196–1209. [Google Scholar] [CrossRef]
- Prabakaran, B.; Akhtar, A.; Rehman, S.; Hasan, O.; Shafique, M. BioNetExplorer: Architecture-Space Exploration of Biosignal Processing Deep Neural Networks for Wearables. IEEE Internet Things J. 2021, 8, 13251–13265. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. MIT-BIH Arrhythmia Database; PhysioNet: Cambridge, MA, USA, 1992. [Google Scholar] [CrossRef]
- Open Databases. Available online: https://www.physionet.org/about/database (accessed on 29 November 2022).
- Chen, J.W.; Huang, H.K.; Fang, Y.T.; Lin, Y.T.; Li, S.Z.; Chen, B.W.; Lo, Y.C.; Chen, P.C.; Wang, C.F.; Chen, Y.Y. A Data-Driven Model with Feedback Calibration Embedded Blood Pressure Estimator Using Reflective Photoplethysmography. Sensors 2022, 22, 1873. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Glusman, G.; Brogaard, K.; Price, N.D.; Hood, L. P4 medicine: How systems medicine will transform the healthcare sector and society. Pers. Med. 2013, 10, 565–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natta, L.; Guido, F.; Algieri, L.; Mastronardi, V.M.; Rizzi, F.; Scarpa, E.; Qualtieri, A.; Todaro, M.T.; Sallustio, V.; Vittorio, M.D. Conformable AlN Piezoelectric Sensors as a Non-invasive Approach for Swallowing Disorder Assessment. ACS Sens. 2021, 6, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Carreira, S.C.; Chen, Y.; Xiang, C.; Xu, L.; Zhang, B.; Chen, M.; Farrow, I.; Scarpa, F.; Rossiter, J. Stretchable Piezoelectric Sensing Systems for Self-Powered and Wireless Health Monitoring. Adv. Mater. Technol. 2019, 4, 1900100. [Google Scholar] [CrossRef] [Green Version]
- Ha, T.; Tran, J.; Liu, S.; Jang, H.; Jeong, H.; Mitbander, R.; Huh, H.; Qiu, Y.; Duong, J.; Wang, R.L.; et al. A Chest-Laminated Ultrathin and Stretchable E-Tattoo for the Measurement of Electrocardiogram, Seismocardiogram, and Cardiac Time Intervals. Adv. Sci. 2019, 6, 1900290. [Google Scholar] [CrossRef] [Green Version]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Jayaratne, M.; Nallaperuma, D.; De Silva, D.; Alahakoon, D.; Devitt, B.; Webster, K.E.; Chilamkurti, N. A data integration platform for patient-centered e-healthcare and clinical decision support. Future Gener. Comput. Syst. 2019, 92, 996–1008. [Google Scholar] [CrossRef]
- Straessle, R.; Temiz, Y.; Gerke, S.; Weiss, J.; Sridhar, A.; Paredes, S.; Brunschwiler, T.; Loertscher, E.; Ebejer, N.; Michel, B.; et al. Internet of the body and cognitive companion: Enabling high-quality monitoring of patients at home. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), Dalian, China, 12–15 October 2017. [Google Scholar] [CrossRef]
Database | No. of Articles |
---|---|
Scopus | 273 |
WOS | 118 |
PubMed | 155 |
IEEEXplore | 182 |
Ref. | Application Scenario | Output/Classification |
---|---|---|
[64] | Abnormal cardiac rhythms | Thirteen arrhythmia classes |
[3,5,56,57,58] | Arrhythmia classification | Five classes-normal non-ectopic beats, supraventricular ectopic beats, VEBs, fusion beats, and unknown beats |
[60] | Arrhythmia classification | Four classes-normal non-ectopic beats, supraventricular ectopic beats, VEBs, and fusion beats |
[61,62] | Arrhythmia classification | Five classes-normal (N), R-on-T premature ventricular contraction (Ron-T PVC), premature ventricular contraction (PVC), supraventricular premature or ectopic beat (SP or EB), and unclassified beat (UB) |
[65] | Arrhythmia detection | Seventeen rhythm classes |
[2,47] | Atrial fibrillation detection | Binary-presence or absence |
[70] | BP estimation | BP values |
[69] | BP, HR, and SpO2 tracking for BVS maintenance | Binary-normal or abnormal |
[63] | Cardiac rhythm classification | Two classes-premature ventricular contractions (PVCs) and supraventricular premature beats (SPBs). |
[6,30,51,52,53,54] | Cardiac rhythm anomaly detection | Binary-normal or abnormal |
[49,66] | Cardiac rhythm classification | Four classes-atrial fibrillation (AFib), normal rhythms, noise, and other rhythms. |
[67] | Heart rhythm classification | Twenty-six heart rhythm classification + |
[50] | Myocardial Infarction | Binary-presence or absence |
[68] | Shockable rhythm detection for WCD control | Two classes-shockable and non-shockable rhythms |
[29,55,60] | Signal cleaning and preprocessing | - |
[55] | Ventricular ectopic beats (VEBs) detection | Binary-true or false |
Ref. | Model Type | Processor | Optimization |
---|---|---|---|
[64] | Tenary neural network | ASIC wearable embedded processor | Tenary quantization |
[53] | ResNet and Mobilenet | - | TensorFlow Lite-auto pruning and quantization |
[52] | Autoencoder | nrf52840-cortex M4 CPU | TensorFlow lite-auto compression and optimization |
[61] | Temporal convolutional network (TCN) | GWT GAPuino-GAP8 RISC-V | GapFlow/TFLite compression and optimization |
B-L475EIOT01A STM32L4-Cortex M4 CPU | |||
[58] | CNN | - | Multistage pruning |
[3] | 1D CNN | ST Sensor tile-cortexM4 CPU | 8-bit quantization |
[66] | CNN-LSTM | nRF52832 -cortexM4 CPU | 8 bit fixed-point quantization |
[49] | CNN-LSTM | nRF52832-cortexM4 CPU | Knowledge distillation and symmetric fixed-point quantization |
[30] | DNN | Arduino BLE Nano 33 Sense-Cortex M4 | int8 quantization |
[65] | 1D CNN | ASIC | Pruning and adaptive loss-aware quantization (ALQ) |
[67] | DCNN | Xilinx Zynq XC-7Z020 FPGA-(ARM Cortex-A9 + Artix-7 FPGA) | pruning and quantization |
Ref. | Model | Device/CPU |
---|---|---|
Moto360 androidwear device | ||
[48] | LSTM | NanoPi Neo Plus2 |
RaspberryPi zero | ||
[55] | Spike neural networks | ARM Cortex A53 |
[60] | Beat detection KNN and classification LSTM | - |
[47] | Bonsai | Raspberry Pi 3 Model B-Cortex-A53 |
[50] | Random forest | Cortex M3 |
[70] | Artificial neural network (ANN) | EFM32 Leopard Gecko ARM Cortex-M3 |
Ref. | Tool/Framework | Quantization Tool/Library | Device Specific Code Generator | Device | Processor |
---|---|---|---|---|---|
[61] | GapFlow | TFLite | AutoTiler | GWT GAPuino | GAP8 RISC-V |
NEMO/DORY | NEMO | DORY | GWT GAPuino | GAP8 RISC-V | |
TF | TFLite | - | B-L475EIOT01A STM32L4 | Cortex M4 | |
CUBE.AI | TFLite | CUBE.AI | B-L475EIOT01A STM32L4 | Cortex M4 | |
CUBE.AI | CUBE.AI | CUBE.AI | |||
[52] | TFLite Micro | TFLite | - | nRF52840 | Cortex M4 |
[62] | TF | TFLite | - | ||
[53] | TF | TFlite | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shumba, A.-T.; Montanaro, T.; Sergi, I.; Bramanti, A.; Ciccarelli, M.; Rispoli, A.; Carrizzo, A.; De Vittorio, M.; Patrono, L. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. Sensors 2023, 23, 6896. https://doi.org/10.3390/s23156896
Shumba A-T, Montanaro T, Sergi I, Bramanti A, Ciccarelli M, Rispoli A, Carrizzo A, De Vittorio M, Patrono L. Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. Sensors. 2023; 23(15):6896. https://doi.org/10.3390/s23156896
Chicago/Turabian StyleShumba, Angela-Tafadzwa, Teodoro Montanaro, Ilaria Sergi, Alessia Bramanti, Michele Ciccarelli, Antonella Rispoli, Albino Carrizzo, Massimo De Vittorio, and Luigi Patrono. 2023. "Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects" Sensors 23, no. 15: 6896. https://doi.org/10.3390/s23156896
APA StyleShumba, A. -T., Montanaro, T., Sergi, I., Bramanti, A., Ciccarelli, M., Rispoli, A., Carrizzo, A., De Vittorio, M., & Patrono, L. (2023). Wearable Technologies and AI at the Far Edge for Chronic Heart Failure Prevention and Management: A Systematic Review and Prospects. Sensors, 23(15), 6896. https://doi.org/10.3390/s23156896