Operability of Smart Spaces in Urban Environments: A Systematic Review on Enhancing Functionality and User Experience
Abstract
:1. Introduction
1.1. Smart Space Management
1.1.1. Enhancing Energy Harvesters
1.1.2. Addressing Lu2O3 Thin Film Issues
1.1.3. Ensuring Stability and Performance
1.1.4. Promoting Interoperability
1.2. Justification of This Study
2. Materials and Methods
2.1. Data Search
2.2. Data Selection Criteria Using PRISMA
2.3. Data Analysis
3. Result
3.1. Descriptive Analysis
3.2. Content Analysis: Establishing Themes and Trends
3.2.1. Thin Film
3.2.2. Wireless Network
3.2.3. Oxygen Vacancies
3.2.4. Memory Devices
3.2.5. Stability Index
3.2.6. ZnO NPs
3.2.7. Lu2O3 Thin Film
3.2.8. Energy Harvester
3.2.9. Off-Current Ratio
3.2.10. Resistive Switching Device
3.2.11. Heterostructure
3.2.12. Positive Formation Polarity
4. Summary of Findings
5. Discussion
6. Theoretical Implication
- Human–computer interaction: Smart spaces provide a new platform for human–computer interaction. New opportunities for user experience and interaction design are created by the integration of physical spaces with technology;
- Smart spaces generate massive amounts of data that necessitate sophisticated analysis and processing techniques. This can lead to the development of new tools and techniques for data analytics;
- Privacy and security concerns are raised by the integration of technology into physical spaces. The need for new privacy and security measures to protect personal data is one of the theoretical implications of smart spaces;
- Smart spaces can be utilized to optimize urban infrastructure and public services, which has implications for urban planning and design.
7. Conclusions
8. Future Advancement
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Keywords | Year | Strength | Begin | End | 2012–2022 |
---|---|---|---|---|---|
Amendola S, 2014, IEEE INTERNET OF THINGS JOURNAL, V1, P144, DOI 10.1109/jiot.2014.2313981, DOI | 2014 | 13.3 | 2017 | 2019 | |
Waser R, 2009, ADVANCED MATERIALS, V21, P2632, DOI 10.1002/adma.200900375, DOI | 2009 | 11.87 | 2012 | 2014 | |
Zeng Y, 2016, 2016 15TH ACM/IE …… SENSOR NETWORKS (IPSN), V0, P1, DOI | 2016 | 10.3 | 2019 | 2022 | |
Yang JJ, 2012, NATURE NANOTECHNOLOGY, V8, P13, DOI 10.1038/nnano.2012.240, DOI | 2012 | 10.08 | 2014 | 2017 | |
Pan F, 2014, MATERIALS SCIENCE AND ENGINEERING R REPORTS, V83, P1, DOI 10.1016/j.mser.2014.06.002, DOI | 2014 | 10 | 2016 | 2017 | |
Yang JJ, 2008, NATURE NANOTECHNOLOGY, V3, P429, DOI 10.1038/nnano.2008.160, DOI | 2008 | 8.56 | 2012 | 2013 | |
Sawa A, 2008, MATERIALS TODAY, V11, P28, DOI 10.1016/s1369-7021(08)70119-6, DOI | 2008 | 8.56 | 2012 | 2013 | |
Lee M, 2011, NATURE MATERIALS, V10, P625, DOI 10.1038/nmat3070, DOI | 2011 | 8.07 | 2013 | 2016 | |
Wang W, 2016, PROCEEDINGS OF T …… UBIQUITOUS COMPUTING, V0, P363, DOI | 2016 | 7.4 | 2020 | 2022 | |
Yang YC, 2009, NANO LETTERS, V9, P1636, DOI 10.1021/nl900006g, DOI | 2009 | 7.08 | 2012 | 2014 | |
Strukov DB, 2008, NATURE, V453, P80, DOI 10.1038/nature06932, DOI | 2008 | 6.27 | 2012 | 2013 | |
Kwon D, 2010, NATURE NANOTECHNOLOGY, V5, P148, DOI 10.1038/nnano.2009.456, DOI | 2010 | 6.25 | 2012 | 2015 | |
Wong HSP, 2012, PROCEEDINGS OF THE IEEE, V100, P1951, DOI 10.1109/jproc.2012.2190369, DOI | 2012 | 5.72 | 2014 | 2017 | |
Wang H, 2013, ADVANCED MATERIALS, V25, P5498, DOI 10.1002/adma.201301983, DOI | 2013 | 5.56 | 2016 | 2018 | |
Gubbi J, 2013, FUTURE GENERATION COMPUTER SYSTEMS, V29, P1645, DOI 10.1016/j.future.2013.01.010, DOI | 2013 | 5.41 | 2017 | 2018 | |
Costanzo A, 2016, IEEE MICROWAVE MAGAZINE, V17, P30, DOI 10.1109/mmm.2016.2525119, DOI | 2016 | 5.34 | 2017 | 2019 | |
Lim EW, 2015, ELECTRONICS, V4, P586, DOI 10.3390/electronics4030586, DOI | 2015 | 5.26 | 2019 | 2020 | |
Sun B, 2015, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, V17, P6718, DOI 10.1039/c4cp04901b, DOI | 2015 | 5.01 | 2015 | 2017 | |
Huang C, 2019, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, V18, P4157, DOI 10.1109/twc.2019.2922609, DOI | 2019 | 4.96 | 2020 | 2022 | |
Renzo MD, 2019, EURASIP JOURNA …… NS AND NETWORKING, V2019, P129, DOI | 2019 | 4.96 | 2020 | 2022 | |
Welkie A, 2017, PROCEEDINGS OF …… OT TOPICS IN NETWORKS, V0, P36, DOI | 2017 | 4.66 | 2019 | 2022 | |
Zanella A, 2014, IEEE INTERNET OF THINGS JOURNAL, V1, P22, DOI 10.1109/jiot.2014.2306328, DOI | 2014 | 4.63 | 2016 | 2019 | |
Jeong DS, 2012, REPORTS ON PROGRESS IN PHYSICS, V75, P076502, DOI 10.1088/0034-4885/75/7/076502, DOI | 2012 | 4.55 | 2015 | 2017 | |
Sun B, 2015, JOURNAL OF MATERIALS CHEMISTRY C, V3, P12149, DOI 10.1039/c5tc02732b, DOI | 2015 | 4.36 | 2017 | 2018 | |
He X, 2016, ACS APPLIED MATERIALS AND INTERFACES, V8, P10954, DOI 10.1021/acsami.5b10414, DOI | 2016 | 4.22 | 2017 | 2018 |
References
- Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob. Comput. 2009, 5, 277–298. [Google Scholar]
- Gilman, E.; Riekki, J. Smart spaces: A metacognitive approach. In Proceedings of the Grid and Pervasive Computing Workshops: International Workshops, S3E, HWTS, Doctoral Colloquium, in Conjunction with GPC 2011, Oulu, Finland, 11–13 May 2011; Revised Selected Papers 6. Springer: Berlin/Heidelberg, Germany, 2012; pp. 148–155. [Google Scholar]
- Narayanan, U.; Paul, V.; Joseph, S. A novel system architecture for secure authentication and data sharing in cloud enabled Big Data Environment. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 3121–3135. [Google Scholar]
- Nguyen, T.A.; Aiello, M. Energy intelligent buildings based on user activity: A survey. Energy Build. 2013, 56, 244–257. [Google Scholar]
- Abdel-Basset, M.; Chang, V.; Nabeeh, N.A. An intelligent framework using disruptive technologies for COVID-19 analysis. Technol. Forecast. Soc. Chang. 2021, 163, 120431. [Google Scholar]
- Markman, G.D.; Waldron, T.L.; Gianiodis, P.T.; Espina, M.I. E pluribus unum: Impact entrepreneurship as a solution to grand challenges. Acad. Manag. Perspect. 2019, 33, 371–382. [Google Scholar] [CrossRef]
- Weiss, G. (Ed.) Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Shabbir, J.; Anwer, T. Artificial intelligence and its role in near future. arXiv 2018, arXiv:1804.01396. [Google Scholar]
- Elgazzar, K.; Khalil, H.; Alghamdi, T.; Badr, A.; Abdelkader, G.; Elewah, A.; Buyya, R. Revisiting the internet of things: New trends, opportunities and grand challenges. Front. Internet Things 2022, 1, 7. [Google Scholar] [CrossRef]
- Madakam, S.; Lake, V.; Lake, V.; Lake, V. Internet of Things (IoT): A literature review. J. Comput. Commun. 2015, 3, 164. [Google Scholar] [CrossRef] [Green Version]
- Gollan, B.; Haslgruebler, M.; Ferscha, A.; Heftberger, J. Making Sense: Experiences with Multi-Sensor Fusion in Industrial Assistance Systems. In Proceedings of the 5th International Conference on Physiological Computing Systems, Seville, Spain, 19–21 September 2018; pp. 64–74. [Google Scholar]
- Ferrando, S.P.; Onaindia, E. Context-aware multi-agent planning in intelligent environments. Inf. Sci. 2013, 227, 22–42. [Google Scholar]
- Poslad, S. Ubiquitous Computing: Smart Devices, Environments and Interactions; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Patel, A.; Panchal, C.; Kheraj, V.; Desai, M. Thin film technology: A review. Int. J. Adv. Eng. Res. Stud. 2009, 1, 134–137. [Google Scholar]
- Niklasson, G.A.; Granqvist, C.G. Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 2007, 17, 127–156. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulou, M.; Vernardou, D.; Koudoumas, E.; Katsarakis, N.; Tsoukalas, D.; Raptis, Y.S. Tunable properties of Mg-doped V2O5 thin films for energy applications: Li-ion batteries and electrochromics. J. Phys. Chem. C 2017, 121, 70–79. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Ozcelebi, T.; Lukkien, J.J.; Uysal, M. Wireless sensor networks in smart buildings: A survey. Comput. Netw. 2012, 56, 2672–2695. [Google Scholar]
- Bello, O.O.; Zeadally, S. Wireless sensor networks for smart homes. J. Netw. Comput. Appl. 2014, 46, 1–14. [Google Scholar]
- Sathasivam, S.; Rani, S.K.; Nagao, S.; Sasaki, T.; Mizuseki, H. Oxygen vacancies: Origin, consequences, and opportunities in functional thin films. Trends Mater. Sci. 2016, 1, 129–144. [Google Scholar]
- Zhang, X.; Zheng, L.; Zhang, Y.; Li, L.; Xu, W. Smart windows based on chromogenic materials: A review. Nanomaterials 2019, 9, 1383. [Google Scholar]
- Zhang, J.; Xie, X.; Li, Y.; Zhang, X.; Luo, H.; Chen, L.; Zhang, X. Oxygen vacancy engineering in oxide materials for energy applications. Adv. Energy Mater. 2018, 8, 1701685. [Google Scholar]
- Ma, L.; Wang, J.; Yuan, Z.; Cui, L.; Yang, F. A survey of in-memory computing for AI applications. Future Gener. Comput. Syst. 2021, 117, 308–328. [Google Scholar]
- Lu, H.; Pan, L.; Wang, W.; Yang, X.; Han, J. Sensor-based smart homes: A survey. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 401–415. [Google Scholar]
- Graaf, M.M.; Katsma, C.P.; Bourgeois, J. Usable intelligent environments: Challenges and directions. Pers. Ubiquitous Comput. 2018, 22, 1099–1110. [Google Scholar]
- Schroeder, M.; Hwang, J.; Funakubo, H. Oxygen vacancies in functional materials: Effects on electronic properties and possibilities for tuning. Appl. Phys. Rev. 2019, 6, 021314. [Google Scholar]
- Raza, S.; Salman, M.; Ali, I.; Ahmed, S.; Ahmed, I.; Yasin, U. IoT-based smart healthcare framework for real-time monitoring in smart cities. Future Gener. Comput. Syst. 2020, 102, 612–625. [Google Scholar]
- Zhang, Y.; Zhang, Y.; Chen, H. Smart space management: A review of the state-of-the-art. Build. Environ. 2021, 198, 107880. [Google Scholar] [CrossRef]
- Lee, H.; Choi, S.; Kim, D.; Lee, K. Smart space: An overview. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 6, 1189–1199. [Google Scholar]
- Varshney, K.R.; Sarker, S. Smart building and facility management: A review of smart sensors, energy management systems, and building automation systems. ACM Trans. Manag. Inf. Syst. 2019, 10, 1–29. [Google Scholar] [CrossRef]
- Jin, Y.; Xie, L.; Ding, X. Design of smart campus based on internet of things and building automation system. In Proceedings of the 5th International Conference on Control and Robotics Engineering (ICCRE 2020), Osaka, Japan, 24–26 April 2020; pp. 237–242. [Google Scholar]
- Sikdar, A.; Jha, N.K. Design of an internet of things-based smart home automation system. In Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, 6–8 July 2019; pp. 1–7. [Google Scholar]
- Apanaviciene, R.; Vanagas, A.; Fokaides, P.A. Smart building integration into a smart city (SBISC): Development of a new evaluation framework. Energies 2020, 13, 2190. [Google Scholar] [CrossRef]
- Kanellopoulos, D.; Sharma, V.K.; Panagiotakopoulos, T.; Kameas, A. Networking Architectures and Protocols for IoT Applications in Smart Cities: Recent Developments and Perspectives. Electronics 2023, 12, 2490. [Google Scholar] [CrossRef]
- Chen, J.; Gao, L.; Zhan, D.; Wang, Y.; Wang, X. Smart space energy management based on big data and deep reinforcement learning. IEEE Trans. Smart Grid 2021, 12, 1626–1635. [Google Scholar]
- Choi, Y.; Cho, Y. A study on the impact of smart building management on employee productivity. Sustainability 2019, 11, 2779. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, A.M.; Gia, T.N.; Negash, B.; Anzanpour, A.; Azimi, I. Exploiting smart eXtended Building Information Modelling for indoor environmental quality management: A review. Autom. Constr. 2018, 86, 224–240. [Google Scholar] [CrossRef]
- Wang, D.; Hu, Y.; Wen, Y. Smart building energy management: A review. Renew. Sustain. Energy Rev. 2020, 123, 109761. [Google Scholar] [CrossRef]
- Lehne, M.; Sass, J.; Essenwanger, A.; Schepers, J.; Thun, S. Why digital medicine depends on interoperability. NPJ Digit. Med. 2019, 2, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Cao, X.; Feng, P.; Wu, H.; Wu, Z.; Zhang, R.; Zhang, G. A review of metal oxide resistive switching devices and applications. Micromachines 2019, 10, 759. [Google Scholar]
- Liao, H.; Ran, Y.; Zhong, J.; Li, J.; Li, M.; Yang, H. Panax notoginseng powder-assisted preparation of carbon-quantum-dots/BiOCl with enriched oxygen vacancies and boosted photocatalytic performance. Environ. Res. 2022, 215, 114366. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savović, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Popay, J.; Roberts, H.; Sowden, A.; Petticrew, M.; Arai, L.; Rodgers, M.; Britten, N.; Roen, K.; Duffy, S. Guidance on the conduct of narrative synthesis in systematic reviews. A Prod. ESRC Methods Programme Version 2006, 1, b92. [Google Scholar]
- Ndaguba, E.A.; Cilliers, J.; Ghosh, S. A Systematic Review of a City in a City: An Aerotropolitan Perspective. Land 2022, 11, 1499. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, X. Research on the literature of green building based on the Web of Science: A scientometric analysis in CiteSpace (2002–2018). Sustainability 2019, 11, 3716. [Google Scholar] [CrossRef] [Green Version]
- Havrlant, L.; Kreinovich, V. A simple probabilistic explanation of term frequency-inverse document frequency (tf-idf) heuristic (and variations motivated by this explanation). Int. J. Gen. Syst. 2017, 46, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Yigitcanlar, T.; Erol, I.; Liu, A. Motivations, barriers and risks of smart home adoption: From systematic literature review to conceptual framework. Energy Res. Soc. Sci. 2021, 80, 102211. [Google Scholar] [CrossRef]
- Crowell, J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S88–S95. [Google Scholar] [CrossRef]
- Tönbül, B.; Can, H.A.; Öztürk, T.; Akyıldız, H. Solution processed aluminum-doped ZnO thin films for transparent heater applications. Mater. Sci. Semicond. Process. 2021, 127, 105735. [Google Scholar] [CrossRef]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, materials and coating technologies of thermochromic thin films on smart windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Majidi, C. Enhancing the permittivity of dielectric elastomers with liquid metal. In Proceedings of the SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Online, 27 April–8 May 2020; Volume 11375, pp. 47–53. [Google Scholar] [CrossRef]
- Malakooti, M.H.; Bockstaller, M.R.; Matyjaszewski, K.; Majidi, C. Liquid metal nanocomposites. Nanoscale Adv. 2020, 2, 2668–2677. [Google Scholar] [CrossRef]
- Popescul, D.; Genete, L.D. Data security in smart cities: Challenges and solutions. Inform. Econ. 2016, 20, 29–38. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C.; Li, Y.; Yang, X. V2VR: Reliable hybrid-network-oriented V2V data transmission and routing considering RSUs and connectivity probability. IEEE Trans. Intell. Transp. Syst. 2020, 22, 3533–3546. [Google Scholar] [CrossRef]
- Dong, B.; Prakash, V.; Feng, F.; O’Neill, Z. A review of smart building sensing system for better indoor environment control. Energy Build. 2019, 199, 29–46. [Google Scholar] [CrossRef]
- Habibi, S. Smart innovation systems for indoor environmental quality (IEQ). J. Build. Eng. 2016, 8, 1–13. [Google Scholar] [CrossRef]
- Zonta, T.; da Costa, C.A.; Zeiser, F.A.; de Oliveira Ramos, G.; Kunst, R.; da Rosa Righi, R. A predictive maintenance model for optimizing production schedule using deep neural networks. J. Manuf. Syst. 2022, 62, 450–462. [Google Scholar] [CrossRef]
- So, A.T.; Tse, B.W. Energy and HVAC: Intelligent Air-Conditioning Control. Sens. Intell. Build. 2001, 2, 27–61. [Google Scholar]
- Pineda-Reyes, A.M.; Herrera-Rivera, M.R.; Rojas-Chávez, H.; Cruz-Martínez, H.; Medina, D.I. Recent advances in ZnO-based carbon monoxide sensors: Role of doping. Sensors 2021, 21, 4425. [Google Scholar] [CrossRef]
- Tonezzer, M.; Lacerda, R.G. Zinc oxide nanowires on carbon microfiber as flexible gas sensor. Phys. E Low-Dimens. Syst. Nanostruct. 2012, 44, 1098–1102. [Google Scholar] [CrossRef]
- Kim, J.; Kim, T.; Lee, H.; Choi, C.; Park, S. Back gate engineering for suppressing off-state leakage current in high-k/metal-gate MOSFETs. IEEE Trans. Electron Devices 2018, 65, 863–868. [Google Scholar] [CrossRef]
- Kaminaga, K.; Oka, D.; Hasegawa, T.; Fukumura, T. New lutetium oxide: Electrically conducting rock-salt LuO epitaxial thin film. ACS Omega 2018, 3, 12501–12504. [Google Scholar] [CrossRef]
- Choi, S.J.; Kim, Y.M.; Kim, S.; Choi, Y.K.; Kim, K.H. Understanding the effect of forming polarity on resistive switching in Ni/HfO2/Ni structures. J. Mater. Sci. 2016, 51, 8086–8094. [Google Scholar]
- Ma, D.; Lan, G.; Hassan, M.; Hu, W.; Das, S.K. Sensing, computing, and communications for energy harvesting IoTs: A survey. IEEE Commun. Surv. Tutor. 2019, 22, 1222–1250. [Google Scholar] [CrossRef]
- Xu, C.; Song, Y.; Han, M.; Zhang, H. Portable and wearable self-powered systems based on emerging energy harvesting technology. Microsyst. Nanoeng. 2021, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Mistry, K.; Dey, S.; Gupta, S.K. Reducing off-state current in organic field-effect transistors using self-assembled monolayer. Microsyst. Technol. 2019, 25, 2299–2305. [Google Scholar] [CrossRef]
- Kumar, R.; Vathsavayi, V.; Bhanu, P. Performance analysis of various channel materials in a MOSFET. Int. J. Eng. Technol. (UAE) 2018, 7, 10–13. [Google Scholar] [CrossRef]
- Koo, S.M.; Kim, M.K.; Kim, H. Performance analysis of leakage current in MOSFETs according to channel length. J. Semicond. Technol. Sci. 2017, 17, 184–189. [Google Scholar] [CrossRef]
- Wu, X.; Yang, J.J.; Huang, R.; Wang, Z.; Xia, Q. Memristor-based synaptic devices for neuromorphic systems. Small Methods 2020, 4, 1900612. [Google Scholar]
- Yu, J.; Li, G.; Zhang, L.; Dong, B. An energy-efficient and cost-effective scheduling algorithm for smart homes based on cloud computing. IEEE Internet Things J. 2021, 8, 4566–4575. [Google Scholar]
- Yu, S.; Wu, H.; Jha, N.K. Energy harvesting with resistive switching devices: Opportunities and challenges. Appl. Phys. Rev. 2021, 8, 031315. [Google Scholar]
- Nurunnabi, M.; Cho, K.S.; Lee, Y. Heterostructure-based smart optical materials. Adv. Mater. 2019, 31, 1806649. [Google Scholar] [CrossRef]
- Huang, P.; Xie, H.; Zhang, Q.; Lv, H. Positive and negative formation polarity in resistive switching memory devices. J. Mater. Sci. Mater. Electron. 2019, 30, 9534–9543. [Google Scholar]
- Kim, S.; Kim, Y.M.; Choi, S.J.; Choi, Y.K.; Kim, K.H. Positive and negative resistive switching in Pt/HfO2/Pt structures. Curr. Appl. Phys. 2017, 17, 392–396. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Q.; Xu, H.; Zou, C.; Zhang, D.W.; Zhang, X.B. Positive and negative formation polarity in Nb2O5 resistive switching devices. J. Phys. D Appl. Phys. 2019, 52, 225104. [Google Scholar]
- Chung, J.Y.; Nolte, A.J.; Stafford, C.M. Surface wrinkling: A versatile platform for measuring thin-film properties. Adv. Mater. 2011, 23, 349–368. [Google Scholar] [CrossRef]
- Qiao, J.; Shen, X.S.; Mark, J.W.; Shen, Q.; He, Y.; Lei, L. Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Commun. Mag. 2015, 53, 209–215. [Google Scholar] [CrossRef]
- Noura, M.; Atiquzzaman, M.; Gaedke, M. Interoperability in internet of things: Taxonomies and open challenges. Mob. Netw. Appl. 2019, 24, 796–809. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.R.; Silva, V.D.; Ferreira, L.S.; Araujo, A.J.; Morales, M.A.; Simoes, T.A.; Paskocimas, C.A.; Macedo, D.A. Role of oxygen vacancies on the energy storage performance of battery-type NiO electrodes. Ceram. Int. 2020, 46, 9233–9239. [Google Scholar] [CrossRef]
Cluster ID | Size | Silhouette | Label (LSI) | Label (LLR) | Average Year |
---|---|---|---|---|---|
0 | 119 | 0.793 | thin film | thin film | 2013 |
1 | 53 | 0.97 | wireless network | reconfigurable intelligent surface | 2018 |
3 | 47 | 0.98 | oxygen vacancies | reset voltage | 2017 |
4 | 39 | 0.911 | oxygen vacancies | plasma-enhanced atomic layer deposition | 2010 |
5 | 36 | 0.915 | memory device | good data retention | 2011 |
6 | 35 | 1 | stability index | iot device | 2014 |
7 | 35 | 0.979 | zno np | zno np | 2016 |
8 | 28 | 0.938 | lu2o3 thin film | lu2o3 thin film | 2010 |
9 | 27 | 0.999 | energy harvester | rectifier nonlinearity | 2015 |
10 | 23 | 0.998 | off current ratio | redox reaction | 2008 |
11 | 11 | 0.98 | resistive switching device | endurance cycle | 2016 |
14 | 8 | 0.988 | heterostructure | heterostructure | 2010 |
18 | 6 | 0.994 | positive formation polarity | cycle | 2010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ndaguba, E.; Cilliers, J.; Ghosh, S.; Herath, S.; Mussi, E.T. Operability of Smart Spaces in Urban Environments: A Systematic Review on Enhancing Functionality and User Experience. Sensors 2023, 23, 6938. https://doi.org/10.3390/s23156938
Ndaguba E, Cilliers J, Ghosh S, Herath S, Mussi ET. Operability of Smart Spaces in Urban Environments: A Systematic Review on Enhancing Functionality and User Experience. Sensors. 2023; 23(15):6938. https://doi.org/10.3390/s23156938
Chicago/Turabian StyleNdaguba, Emeka, Jua Cilliers, Sumita Ghosh, Shanaka Herath, and Eveline Tancredo Mussi. 2023. "Operability of Smart Spaces in Urban Environments: A Systematic Review on Enhancing Functionality and User Experience" Sensors 23, no. 15: 6938. https://doi.org/10.3390/s23156938
APA StyleNdaguba, E., Cilliers, J., Ghosh, S., Herath, S., & Mussi, E. T. (2023). Operability of Smart Spaces in Urban Environments: A Systematic Review on Enhancing Functionality and User Experience. Sensors, 23(15), 6938. https://doi.org/10.3390/s23156938