Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measures
2.3. Procedure
2.4. Accelerometry
2.5. Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Linear Mixed-Effects Modelling
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’Karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannam, K.; Deere, K.; Hartley, A.; Clark, E.; Coulson, J.; Ireland, A.; Moss, C.; Edwards, M.; Dennison, E.; Gaysin, T. A novel accelerometer-based method to describe day-to-day exposure to potentially osteogenic vertical impacts in older adults: Findings from a multi-cohort study. Osteoporos. Int. 2017, 28, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Arvidsson, D.; Fridolfsson, J.; Börjesson, M. Measurement of physical activity in clinical practice using accelerometers. J. Intern. Med. 2019, 286, 137–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; Van Hees, V.T.; Trenell, M.I.; Owen, C.G. Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steene-Johannessen, J.; Hansen, B.H.; Dalene, K.E.; Kolle, E.; Northstone, K.; Møller, N.C.; Grøntved, A.; Wedderkopp, N.; Kriemler, S.; Page, A.S. Variations in accelerometry measured physical activity and sedentary time across Europe–harmonized analyses of 47,497 children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trost, S.G. Population-level physical activity surveillance in young people: Are accelerometer-based measures ready for prime time? Int. J. Behav. Nutr. Phys. Act. 2020, 17, 28. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, J.M.; Hawkins, D.A.; Beckett, L. Estimating Youth Locomotion Ground Reaction Forces Using an Accelerometer-Based Activity Monitor. PLoS ONE 2012, 7, e48182. [Google Scholar] [CrossRef]
- Garcia, A.W.; Langenthal, C.R.; Angulo-Barroso, R.M.; Gross, M.M. A comparison of accelerometers for predicting energy expenditure and vertical ground reaction force in school-age children. Meas. Phys. Educ. Exerc. Sci. 2004, 8, 119–144. [Google Scholar] [CrossRef]
- Janz, K.F.; Rao, S.; Baumann, H.J.; Schultz, J.L. Measuring children’s vertical ground reaction forces with accelerometry during walking, running, and jumping: The Iowa Bone Development Study. Pediatr. Exerc. Sci. 2003, 15, 34–43. [Google Scholar] [CrossRef]
- Aadland, E.; Andersen, L.B.; Anderssen, S.A.; Resaland, G.K.; Kvalheim, O.M. Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. J. Sports Sci. 2020, 38, 256–263. [Google Scholar] [CrossRef]
- Bauer, J.J.; Fuchs, R.K.; Smith, G.A.; Snow, C.M. Quantifying force magnitude and loading rate from drop landings that induce osteogenesis. J. Appl. Biomech. 2001, 17, 142–152. [Google Scholar] [CrossRef]
- Johannsen, N.; Binkley, T.; Englert, V.; Neiderauer, G.; Specker, B. Bone response to jumping is site-specific in children: A randomized trial. Bone 2003, 33, 533–539. [Google Scholar] [CrossRef] [PubMed]
- McKay, H.; Tsang, G.; Heinonen, A.; MacKelvie, K.; Sanderson, D.; Khan, K.M. Ground reaction forces associated with an effective elementary school based jumping intervention. Br. J. Sports Med. 2005, 39, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Pouliot-Laforte, A.; Veilleux, L.N.; Rauch, F.; Lemay, M. Validity of an accelerometer as a vertical ground reaction force measuring device in healthy children and adolescents and in children and adolescents with osteogenesis imperfecta type I. J. Musculoskelet. Neuronal Interact. 2014, 14, 155–161. [Google Scholar]
- Rowlands, A.; Stiles, V. Accelerometer counts and raw acceleration output in relation to mechanical loading. J. Biomech. 2012, 45, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Stiles, V.H.; Griew, P.J.; Rowlands, A.V. Use of Accelerometry to Classify Activity Beneficial to Bone in Premenopausal Women. Med. Sci. Sports Exerc. 2013, 45, 2353–2361. [Google Scholar] [CrossRef] [Green Version]
- Neugebauer, J.M.; Lafiandra, M. Predicting Ground Reaction Force from a Hip-Borne Accelerometer during Load Carriage. Med. Sci. Sports Exerc. 2018, 50, 2369–2374. [Google Scholar] [CrossRef]
- Veras, L.; Diniz-Sousa, F.; Boppre, G.; Devezas, V.; Santos-Sousa, H.; Preto, J.; Vilas-Boas, J.; Machado, L.; Oliveira, J.; Fonseca, H. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos. Int. 2020, 31, 1239–1250. [Google Scholar] [CrossRef]
- Meyer, U.; Ernst, D.; Schott, S.; Riera, C.; Hattendorf, J.; Romkes, J.; Granacher, U.; Gopfert, B.; Kriemler, S. Validation of two accelerometers to determine mechanical loading of physical activities in children. J. Sports Sci. 2015, 33, 1702–1709. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.J.; Rowlands, A.V.; Cliff, D.P.; Morgan, P.J.; Plotnikoff, R.C.; Lubans, D.R. Comparability and feasibility of wrist-and hip-worn accelerometers in free-living adolescents. J. Sci. Med. Sport 2017, 20, 1101–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leppänen, M.H.; Migueles, J.H.; Cadenas-Sanchez, C.; Henriksson, P.; Mora-Gonzalez, J.; Henriksson, H.; Labayen, I.; Löf, M.; Esteban-Cornejo, I.; Ortega, F.B. Hip and wrist accelerometers showed consistent associations with fitness and fatness in children aged 8–12 years. Acta Paediatr. 2020, 109, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.A.; Davies, S.; Wake, M.; Azzopardi, P.S.; Baur, L.A.; Burgner, D.P.; Carlin, J.B.; Cheung, M.; Dwyer, T.; Edwards, B.; et al. Child Health CheckPoint: Cohort summary and methodology of a physical health and biospecimen module for the Longitudinal Study of Australian Children. BMJ Open 2019, 9, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Hallal, P.C.; Bertoldi, A.D.; Domingues, M.R.; da Silveira, M.F.; Demarco, F.F.; da Silva, I.C.M.; Barros, F.C.; Victora, C.G.; Bassani, D.G. Cohort Profile: The 2015 Pelotas (Brazil) Birth Cohort Study. Int. J. Epidemiol. 2017, 47, 1048–1048h. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Noonan, R.; Rowlands, A.V.; Van Hees, V.; Knowles, Z.; Boddy, L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 245–253. [Google Scholar] [CrossRef]
- McLellan, G.; Arthur, R.; Buchan, D.S. Wear compliance, sedentary behaviour and activity in free-living children from hip- and wrist-mounted ActiGraph GT3X+ accelerometers. J. Sports Sci. 2018, 36, 2424–2430. [Google Scholar] [CrossRef] [Green Version]
- Freedson, P.; Pober, D.; Janz, K.F. Calibration of accelerometer output for children. Med. Sci. Sports Exerc. 2005, 37, S523–S530. [Google Scholar] [CrossRef]
- Pedley, J.; Lloyd, R.S.; Read, P.; Moore, I.; Myer, G.; Oliver, J. A novel method to categorise stretch-shortening cycle performance across maturity in youth soccer players. J. Strength Cond. Res. 2020, 36, 2573–2580. [Google Scholar] [CrossRef]
- Quatman, C.E.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Maturation leads to gender differences in landing force and vertical jump performance—A longitudinal study. Am. J. Sports Med. 2006, 34, 806–813. [Google Scholar] [CrossRef]
- Swartz, E.E.; Decoster, L.C.; Russell, P.J.; Croce, R.V. Effects of developmental stage and sex on lower extremity kinematics and vertical ground reaction forces during landing. J. Athl. Train. 2005, 40, 9–14. [Google Scholar]
- Trost, S.G. State of the art reviews: Measurement of physical activity in children and adolescents. Am. J. Lifestyle Med. 2007, 1, 299–314. [Google Scholar] [CrossRef]
- Ross, W.; Marfell-Jones, M.; MacDougall, J.; Wenger, H.; Green, H. Physiological Testing of the High Performance Athlete; Kinanthropometry; Human Kinetics Books: Champaign, IL, USA, 1991; pp. 223–308. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.D.G.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar] [PubMed]
- Turner, C.H.; Robling, A.G. Designing exercise regimens to increase bone strength. Exerc. Sport Sci. Rev. 2003, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Turner, C.H.; Owan, I.; Takano, Y. Mechanotransduction in bone: Role of strain rate. Am. J. Physiol.-Endocrinol. Metab. 1995, 269, E438–E442. [Google Scholar] [CrossRef] [PubMed]
- van Hees, V.T.; Gorzelniak, L.; Leon, E.C.D.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renstrom, F.; Franks, P.W.; Horsch, A.; et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef] [Green Version]
- Pedley, J.S.; DiCesare, C.A.; Lloyd, R.S.; Oliver, J.L.; Ford, K.R.; Hewett, T.E.; Myer, G.D. Maturity alters drop vertical jump landing force-time profiles but not performance outcomes in adolescent females. Scand. J. Med. Sci. Sports 2021, 31, 2055–2063. [Google Scholar] [CrossRef]
- Meyns, P.; Van de Walle, P.; Desloovere, K.; Janssens, S.; Van Sever, S.; Hallemans, A. Age-related differences in interlimb coordination during typical gait: An observational study. Gait Posture 2020, 81, 109–115. [Google Scholar] [CrossRef]
- Van de Walle, P.; Meyns, P.; Desloovere, K.; De Rijck, J.; Kenis, J.; Verbecque, E.; Van Criekinge, T.; Hallemans, A. Age-related changes in arm motion during typical gait. Gait Posture 2018, 66, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, A.V.; Rennie, K.; Kozarski, R.; Stanley, R.M.; Eston, R.G.; Parfitt, G.C.; Olds, T.S. Children’s Physical Activity Assessed with Wrist- and Hip-Worn Accelerometers. Med. Sci. Sports Exerc. 2014, 46, 2308–2316. [Google Scholar] [CrossRef]
- Noonan, R.J.; Boddy, L.M.; Kim, Y.; Knowles, Z.R.; Fairclough, S.J. Comparison of children’s free-living physical activity derived from wrist and hip raw accelerations during the segmented week. J. Sports Sci. 2017, 35, 2067–2072. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Cal Abad, C.C.; Fernandes, V.; Ramirez-Campillo, R.; Suchomel, T. Portable force plates: A viable and practical alternative to rapidly and accurately monitor elite sprint performance. Sports 2018, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Lake, J.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent validity of a portable force plate using vertical jump force–time characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Peterson Silveira, R.; Stergiou, P.; Carpes, F.P.; Castro, F.A.d.S.; Katz, L.; Stefanyshyn, D.J. Validity of a portable force platform for assessing biomechanical parameters in three different tasks. Sports Biomech. 2017, 16, 177–186. [Google Scholar] [CrossRef]
- Walsh, M.S.; Ford, K.R.; Bangen, K.J.; Myer, G.D.; Hewett, T.E. The validation of a portable force plate for measuring force-time data during jumping and landing tasks. J. Strength Cond. Res. 2006, 20, 730. [Google Scholar] [PubMed]
- Hori, N.; Newton, R.U.; Kawamori, N.; McGuigan, M.R.; Kraemer, W.J.; Nosaka, K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J. Strength Cond. Res. 2009, 23, 874–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malina, R.M.; Koziel, S.M. Validation of maturity offset in a longitudinal sample of Polish boys. J. Sports Sci. 2014, 32, 424–437. [Google Scholar] [CrossRef]
All | Male | Female | |
---|---|---|---|
(n = 269) | (n = 127) | (n = 142) | |
Age | 12.3 (2.0) | 12.3 (2.1) | 12.3 (1.9) |
Height (m) | 1.54 (0.14) | 1.55 (0.15) | 1.54 (0.12) |
Leg Length (m) | 0.74 (0.07) | 0.75 (0.08) | 0.73 (0.07) |
Mass (kg) | 46.01 (13.50) | 45.15 (13.75) | 46.79 (13.27) |
BMI (kg/m2) | 18.97 (3.12) | 18.43 (2.87) | 19.45 (3.27) * |
Predicted APHV | 12.77 (1.02) | 13.60 (0.69) | 12.02 (0.60) * |
Maturity offset (years) | −0.44 (1.93) | −1.28 (1.86) | 0.31 (1.68) * |
Pre/Post-PHV (%) | 53/47 | 68/32 | 40/60 |
GENEActiv (Wrist) | Actigraph (Wrist) | Actigraph (Hip) | |||||||
---|---|---|---|---|---|---|---|---|---|
Unstd Beta Coeff (95% CI) | t | p | Unstd Beta Coeff (95% CI) | t | p | Unstd Beta Coeff (95% CI) | t | p | |
Intercept | −2.12 (−2.29, −2.10) | −45.61 | <0.001 | −2.25 (−2.35, −2.14) | −40.72 | <0.001 | −2.98 (3.17, −2.80) | 31.67 | <0.001 |
Acceleration (g) | 1.21 (1.12, 1.29) | 28.39 | <0.001 | 1.30 (1.19, 1.42) | 22.53 | <0.001 | 2.22 (1.97, 2.46) | 17.69 | <0.001 |
Acceleration squared (g) | −0.17 (−0.19, −0.15) | −15.34 | <0.001 | −0.21 (−0.25, −0.18) | −12.25 | <0.001 | −0.52 (−0.061, −0.42) | −10.56 | <0.001 |
Acceleration cubed (g) | 0.01 (0.01, 0.01) | 10.87 | <0.001 | 0.01 (0.01, 0.02) | 9.18 | <0.001 | 0.05 (0.04, 0.06) | 8.25 | <0.001 |
Maturity status (prePHV = 0, postPHV = 1) | −0.14 (−0.2, −0.07) | −4.24 | <0.001 | −0.13 (−0.19, −0.07) | −4.03 | <0.001 | 0.07 (0.00, 0.14) | 1.97 | 0.049 |
Body mass c (kg) | −0.003 (−0.01, 0.00) | −2.04 | 0.041 | −0.002 (−0.01, 0.001) | −1.21 | 0.229 | 0.003 (0.00, 0.01) | 1.74 | 0.082 |
Body mass c × Acceleration interaction | 0.0005 (−0.001, 0.0004) | −1.01 | 0.312 | −0.001 (−0.002, −0.0001) | −2.13 | 0.033 | −0.002 (−0.003, 0.0005) | −2.71 | 0.007 |
Goodness of fit | Pseudo R2 (%) AIC | 81.1 887.1 | 81.9 839.7 | 79.9 896.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brailey, G.; Metcalf, B.; Price, L.; Cumming, S.; Stiles, V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors 2023, 23, 6943. https://doi.org/10.3390/s23156943
Brailey G, Metcalf B, Price L, Cumming S, Stiles V. Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors. 2023; 23(15):6943. https://doi.org/10.3390/s23156943
Chicago/Turabian StyleBrailey, Gemma, Brad Metcalf, Lisa Price, Sean Cumming, and Victoria Stiles. 2023. "Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents" Sensors 23, no. 15: 6943. https://doi.org/10.3390/s23156943
APA StyleBrailey, G., Metcalf, B., Price, L., Cumming, S., & Stiles, V. (2023). Raw Acceleration from Wrist- and Hip-Worn Accelerometers Corresponds with Mechanical Loading in Children and Adolescents. Sensors, 23(15), 6943. https://doi.org/10.3390/s23156943