An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Methodology
2.4. Data Collection and Processing
2.5. Statistical Analysis
3. Results
3.1. Three-Speed Treadmill Test
3.2. Treadmill O2max Test
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McLaren, S.J.; Macpherson, T.W.; Coutts, A.J.; Hurst, C.; Spears, I.R.; Weston, M. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Med. 2018, 48, 641–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef]
- Manchado, C.; Pueo, B.; Chirosa-Rios, L.J.; Tortosa-Martínez, J. Time–Motion Analysis by Playing Positions of Male Handball Players during the European Championship 2020. Int. J. Environ. Res. Public Health 2021, 18, 2787. [Google Scholar] [CrossRef]
- Sobolewski, E.J. The Relationships between Internal and External Load Measures for Division I College Football Practice. Sports 2020, 8, 165. [Google Scholar] [CrossRef] [PubMed]
- Alt, P.S.; Baumgart, C.; Ueberschär, O.; Freiwald, J.; Hoppe, M.W. Validity of a Local Positioning System during Outdoor and Indoor Conditions for Team Sports. Sensors 2020, 20, 5733. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Shrier, I.; McLaren, S.J.; Coutts, A.J.; McCall, A.; Slattery, K.; Jeffries, A.C.; Kalkhoven, J.T. Understanding Training Load as Exposure and Dose. Sports Med. 2023, 53, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. The Training—Injury Prevention Paradox: Should Athletes Be Training Smarter and Harder? Br. J. Sports Med. 2016, 50, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Drew, M.K.; Finch, C.F. The Relationship Between Training Load and Injury, Illness and Soreness: A Systematic and Literature Review. Sports Med. 2016, 46, 861–883. [Google Scholar] [CrossRef]
- Gonçalves, L.G.C.; Kalva-Filho, C.A.; Nakamura, F.Y.; Rago, V.; Afonso, J.; de Bedo, B.L.S.; Aquino, R. Effects of Match-Related Contextual Factors on Weekly Load Responses in Professional Brazilian Soccer Players. Int. J. Env. Res. Public. Health 2020, 17, 5163. [Google Scholar] [CrossRef]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [Green Version]
- Finni, T.; Hu, M.; Kettunen, P.; Vilavuo, T.; Cheng, S. Measurement of EMG Activity with Textile Electrodes Embedded into Clothing. Physiol. Meas. 2007, 28, 1405–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Sandsjö, L.; Ortiz-Catalan, M.; Skrifvars, M. Systematic Review of Textile-Based Electrodes for Long-Term and Continuous Surface Electromyography Recording. Text. Res. J. 2020, 90, 227–244. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Lee, S.; Jeong, W. EMG Measurement with Textile-Based Electrodes in Different Electrode Sizes and Clothing Pressures for Smart Clothing Design Optimization. Polymers 2020, 12, 2406. [Google Scholar] [CrossRef] [PubMed]
- Colyer, S.L.; McGuigan, P.M. Textile Electrodes Embedded in Clothing: A Practical Alternative to Traditional Surface Electromyography When Assessing Muscle Excitation during Functional Movements. J. Sports Sci. Med. 2018, 17, 101. [Google Scholar]
- Lynn, S.K.; Watkins, C.M.; Wong, M.; Balfany, K.; Feeney, D.F. Validity and Reliability of Surface Electromyography Measurements from a Wearable Athlete Performance System. J. Sports Sci. Med. 2018, 17, 205. [Google Scholar]
- Snarr, R.L.; Tolusso, D.V.; Hallmark, A.V.; Esco, M.R. Validity of Wearable Electromyographical Compression Shorts to Predict Lactate Threshold during Incremental Exercise in Healthy Subjects. J. Strength. Cond. Res. 2021, 35, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Svensson, F.; Aasa, U.; Strong, A. Textile Electromyography Electrodes Reveal Differences in Lower Limb Muscle Activation during Loaded Squats When Comparing Fixed and Free Barbell Movement Paths. Front. Sports Act. Living 2022, 4, 1021323. [Google Scholar] [CrossRef]
- Tikkanen, O.; Haakana, P.; Pesola, A.J.; Häkkinen, K.; Rantalainen, T.; Havu, M.; Pullinen, T.; Finni, T. Muscle Activity and Inactivity Periods during Normal Daily Life. PLoS ONE 2013, 8, e52228. [Google Scholar] [CrossRef] [Green Version]
- Kyröläinen, H.; Belli, A.; Komi, P.V. Biomechanical Factors Affecting Running Economy. Med. Sci. Sports Exerc. 2001, 33, 1330–1337. [Google Scholar] [CrossRef]
- Bigland-Ritchie, B.; Woods, J.J. Integrated Electromyogram and Oxygen Uptake during Positive and Negative Work. J. Physiol. 1976, 260, 267. [Google Scholar] [CrossRef]
- Watanabe, K.; Narouei, S. Association between Oxygen Consumption and Surface Electromyographic Amplitude and Its Variation within Individual Calf Muscles during Walking at Various Speeds. Sensors 2021, 21, 1748. [Google Scholar] [CrossRef] [PubMed]
- Howe, S.T.; Aughey, R.J.; Hopkins, W.G.; Cavanagh, B.P.; Stewart, A.M. Sensitivity, Reliability and Construct Validity of GPS and Accelerometers for Quantifying Peak Periods of Rugby Competition. PLoS ONE 2020, 15, e0236024. [Google Scholar] [CrossRef] [PubMed]
- Nicolella, D.P.; Torres-Ronda, L.; Saylor, K.J.; Schelling, X. Validity and Reliability of an Accelerometer-Based Player Tracking Device. PLoS ONE 2018, 13, e0191823. [Google Scholar] [CrossRef] [PubMed]
- Marynowicz, J.; Kikut, K.; Lango, M.; Horna, D.; Andrzejewski, M. Relationship Between the Session-RPE and External Measures of Training Load in Youth Soccer Training. J. Strength. Cond. Res. 2020, 34, 2800–2804. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.L.; O’Grady, C.J.; Scanlan, A.T. The Relationships Between External and Internal Workloads During Basketball Training and Games. Int. J. Sports Physiol. Perform. 2020, 15, 1081–1086. [Google Scholar] [CrossRef]
- Chang, C.H.; Lin, K.C.; Ho, C.S.; Huang, C.C. Accuracy of the Energy Expenditure during Uphill Exercise Measured by the Waist-Worn ActiGraph. J. Exerc. Sci. Fit. 2019, 17, 62–66. [Google Scholar] [CrossRef]
- Kuiken, T.A.; Lowery, M.M.; Stoykov, N.S. The Effect of Subcutaneous Fat on Myoelectric Signal Amplitude and Cross-Talk. Prosthet. Orthot. Int. 2003, 27, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s Guide to Correlation Coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Gazendam, M.G.J.; Hof, A.L. Averaged EMG Profiles in Jogging and Running at Different Speeds. Gait Posture 2007, 25, 604–614. [Google Scholar] [CrossRef]
- Miura, H.; Araki, H.; Matoba, H.; Kitagawa, K. Relationship among Oxygenation, Myoelectric Activity, and Lactic Acid Accumulation in Vastus Lateralis Muscle during Exercise with Constant Work Rate. Int. J. Sports Med. 2000, 21, 180–184. [Google Scholar] [CrossRef]
- Martens, J.; Daly, D.; Deschamps, K.; Fernandes, R.J.P.; Staes, F. Intra-Individual Variability of Surface Electromyography in Front Crawl Swimming. PLoS ONE 2015, 10, e0144998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidetti, L.; Rivellini, G.; Figura, F. EMG Patterns during Running: Intra- and Inter-Individual Variability. J. Electromyogr. Kinesiol. 1996, 6, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Linssen, W.H.J.P.; Stegeman, D.F.; Joosten, E.M.G.; Binkhorst, R.A.; Merks, M.J.H.; Laak, H.J.T.; Notermans, S.L.H. Fatigue in Type I Fiber Predominance: A Muscle Force and Surface EMG Study on the Relative Role of Type I and Type II Muscle Fibers. Muscle Nerve 1991, 14, 829–837. [Google Scholar] [CrossRef]
- Bourdon, P.C.; Cardinale, M.; Murray, A.; Gastin, P.; Kellmann, M.; Varley, M.C.; Gabbett, T.J.; Coutts, A.J.; Burgess, D.J.; Gregson, W.; et al. Monitoring Athlete Training Loads: Consensus Statement. Int. J. Sports Physiol. Perform. 2017, 12, 161–170. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring Training Load to Understand Fatigue in Athletes. Sports Med. 2014, 44 (Suppl. S2), 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, R.M.; Huggins, R.A.; Benjamin, C.L.; Sekiguchi, Y.; Adams, W.M.; Arent, S.M.; Jain, R.; Miller, S.J.; Walker, A.J.; Casa, D.J. Contextual Factors Influencing External and Internal Training Loads in Collegiate Men’s Soccer. J. Strength. Cond. Res. 2020, 34, 374–381. [Google Scholar] [CrossRef]
- Tikkanen, O.; Kärkkäinen, S.; Haakana, P.; Kallinen, M.; Pullinen, T.; Finni, T. EMG, Heart Rate, and Accelerometer as Estimators of Energy Expenditure in Locomotion. Med. Sci. Sports Exerc. 2014, 46, 1831–1839. [Google Scholar] [CrossRef]
- Kipp, S.; Grabowski, A.M.; Kram, R. What Determines the Metabolic Cost of Human Running across a Wide Range of Velocities? J. Exp. Biol. 2018, 221, jeb184218. [Google Scholar] [CrossRef] [Green Version]
- Bastien, G.J.; Willems, P.A.; Schepens, B.; Heglund, N.C. Effect of Load and Speed on the Energetic Cost of Human Walking. Eur. J. Appl. Physiol. 2005, 94, 76–83. [Google Scholar] [CrossRef]
- Fontes, E.B.; Smirmaul, B.P.C.; Nakamura, F.Y.; Pereira, G.; Okano, A.H.; Altimari, L.R.; Dantas, J.L.; De Moraes, A.C. The Relationship between Rating of Perceived Exertion and Muscle Activity during Exhaustive Constant-Load Cycling. Int. J. Sports Med. 2010, 31, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Ni, W.; Zhang, Y.; Li, X.; Wang, X.; Wu, Y.; Liu, G. A Study on the Relationship between RPE and SEMG in Dynamic Contraction Based on the GPR Method. Electronics 2022, 11, 691. [Google Scholar] [CrossRef]
- Seals, D.R.; Enoka, R.M. Sympathetic Activation Is Associated with Increases in EMG during Fatiguing Exercise. J. Appl. Physiol. 1989, 66, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Fallentin, N.; Sidenius, B.; Jorgensen, K. Blood Pressure, Heart Rate and EMG in Low Level Static Contractions. Acta Physiol. Scand. 1985, 125, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.R.; Vicenzino, B.; Blanch, P.; Hodges, P.W. Patterns of Leg Muscle Recruitment Vary between Novice and Highly Trained Cyclists. J. Electromyogr. Kinesiol. 2008, 18, 359–371. [Google Scholar] [CrossRef]
Characteristic | Female | Male |
---|---|---|
Age (years) | 23.5 ± 1.5 | 26.1 ± 3.7 |
Body mass (kg) | 59.3 ± 3.6 | 78.3 ± 9.4 |
Height (m) | 165.8 ± 8.0 | 180.4 ± 8.3 |
Body fat (%) | 30.9 ± 6.3 | 17.4 ± 5.5 |
O2max (mL⋅kg −1⋅min−1) | 40.8 ± 2.6 | 49.6 ± 6.0 |
No. of Participants | O2max | sEMG-TL (a.u) | HR (bpm) | RPE (a.u.) | PL (a.u.) |
---|---|---|---|---|---|
10 | 1 | 85.85 (63.77, 100.37) | 138 (128, 156) | 8 (7, 12) | 15.00 (12.00, 16.75) |
10 | 2 | 81.42 (69.40, 105.46) | 166 (151, 170) | 11 (9, 14) | 15.00 (12.75, 16,25) |
10 | 3 | 82.79 (71.40, 108.62) | 163 (159, 178) | 13 (11, 14) | 15.50 (13.55, 16,25) |
10 | 4 | 87.07 (71.96, 109.15) | 167 (159, 176) | 15 (11, 17) | 15.50 (13.50, 16.25) |
9 | 5 | 78.44 (72.76, 107.05) | 170 (164, 181) | 14 (12, 17) | 16.00 (12.00, 17.00) |
7 | 6 | 94.26 (72.30, 109.51) | 177 (170, 194) | 16 (15, 19) | 16.00 (12.00, 17.00) |
7 | 7 | 102.89 (74.31, 112.42) | 181 (152, 192) | 16 (9, 19) | 16.00 (13.00, 17.00) |
6 | 8 | 94.52 (68.57, 110.88) | 182 (164, 186) | 18 (13, 19) | 16.50 (12.75, 18.75) |
3 | 9 | 112.69 (94.35, 116.31) | 186 (180, 189) | 18 (17, 18) | 17.00 (12.00, 18.50) |
1 | 10 | 113.15 | 204 | 20 | 18.00 |
1 | 11 | 101.00 | 204 | 20 | 19.00 |
Participant | 1 | 2 | 3 | 4 | 5 | Participant | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | PL | 2 | ||||||||||
sEMG-TL | 0.33 | −0.09 | ||||||||||
O2max | 0.42 | 0.83 ** | −0.57 | 0.80 | ||||||||
RPE | 0.46 | 0.81 ** | 0.98 ** | −0.38 | 0.92 * | 0.96 ** | ||||||
HR | 0.48 | 0.78 * | 0.98 ** | 0.97 ** | −0.76 | 0.61 | 0.94 * | 0.82 | ||||
3 | PL | 4 | ||||||||||
sEMG-TL | 0.49 | 0.67 | ||||||||||
O2max | 0.42 | 0.81 * | 0.49 | 0.92 ** | ||||||||
RPE | 0.40 | 0.67 | 0.95 ** | 0.62 | 0.99 ** | 0.96 ** | ||||||
HR | 0.43 | 0.84 ** | 0.99 ** | 0.95 ** | 0.38 | 0.81 * | 0.96 ** | 0.87 ** | ||||
5 | PL | 6 | ||||||||||
sEMG-TL | −0.07 | 0.66 * | ||||||||||
O2max | −0.16 | 0.90 ** | 0.85 ** | 0.84 ** | ||||||||
RPE | −0.04 | 0.99 ** | 0.89 ** | 0.79 ** | 0.88 ** | 0.99 ** | ||||||
HR | −0.15 | 0.94 ** | 0.99 ** | 0.93 ** | 0.82 ** | 0.74 ** | 0.98 ** | 0.96 ** | ||||
7 | PL | 8 | ||||||||||
sEMG-TL | 0.30 | 0.91 * | ||||||||||
O2max | 0.31 | 0.97 * | 0.97 ** | 0.96 ** | ||||||||
RPE | 0.00 | 0.56 | 0.73 | 0.96 ** | 0.83 | 0.90 * | ||||||
HR | 0.34 | 0.95 | 0.99 ** | 0.77 | 0.95 * | 0.99 ** | 0.99 ** | 0.88 | ||||
9 | PL | 10 | ||||||||||
sEMG-TL | −0.60 | 0.88 ** | ||||||||||
O2max | −0.83 * | 0.85 ** | 0.74 | 0.88 ** | ||||||||
RPE | −0.74 * | 0.96 ** | 0.95 ** | 0.75 | 0.88 ** | 0.99 ** | ||||||
HR | −0.83 * | 0.86 ** | 0.99 ** | 0.96 ** | 0.79 * | 0.95 ** | 0.97 ** | 0.97 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashcroft, K.; Robinson, T.; Condell, J.; Penpraze, V.; White, A.; Bird, S.P. An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running. Sensors 2023, 23, 6998. https://doi.org/10.3390/s23156998
Ashcroft K, Robinson T, Condell J, Penpraze V, White A, Bird SP. An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running. Sensors. 2023; 23(15):6998. https://doi.org/10.3390/s23156998
Chicago/Turabian StyleAshcroft, Kurtis, Tony Robinson, Joan Condell, Victoria Penpraze, Andrew White, and Stephen P. Bird. 2023. "An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running" Sensors 23, no. 15: 6998. https://doi.org/10.3390/s23156998
APA StyleAshcroft, K., Robinson, T., Condell, J., Penpraze, V., White, A., & Bird, S. P. (2023). An Investigation of Surface EMG Shorts-Derived Training Load during Treadmill Running. Sensors, 23(15), 6998. https://doi.org/10.3390/s23156998