Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System
Abstract
:1. Introduction
2. UBVMS Model
2.1. Design of the UBVMS
2.2. General Kinematics and Dynamics of Underwater Vehicle
- 1.
- The UBVMS states , , and can be measured.
- 2.
- The total unknowns , , and are bounded, namely and , , .
3. Problem Formulation
3.1. Nonlinear Model Predictive Control
3.2. Uncertainty Consideration and Disturbance Estimation
Algorithm 1: NMPC for UBVMS Algorithm |
1: Initialize system parameters; |
2: Repeat; |
3: Measure and compute estimated velocities, along with system state disturbance term updates from ESOs; |
4: Compute future predicted states and predicted obstacle states (17); |
5: Solve the OCP (4) and obtain the desired optimal solution sequence ; |
6: Allocate the desired optimal solution and convert to bionic fin propulsor; |
7: If sonar scan completed, then |
8: Kalman filter update: compute and update , ; |
9: Else , ; |
10: End if |
11: Compute the desired reference path and save system data; |
12: Update: ; |
13: Until stop. |
3.3. Robust Collision Avoidance
4. Simulations and Experimental Results
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UBVMS | underwater biomimetic vehicle-manipulator system |
AUV | autonomous underwater vehicles |
BUV | biomimetic underwater vehicles |
CPG | central pattern generator |
NMPC | nonlinear model predictive control |
ESO | Extended state observers |
KF | Kalman Filter |
References
- Wu, Z.; Liu, J.; Yu, J.; Fang, H. Development of a novel robotic dolphin and its application to water quality monitoring. IEEE/ASME Trans. Mechatron. 2017, 22, 2130–2140. [Google Scholar] [CrossRef]
- Richmond, K.; Flesher, C.; Lindzey, L.; Tanner, N.; Stone, W.C. Sunfish®: A human-portable exploration auv for complex 3d environments. In Proceedings of the OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 22–25 October 2018; pp. 1–9. [Google Scholar]
- Lauder, G.V.; Anderson, E.J.; Tangorra, J.; Madden, P.G. Fish biorobotics: Kinematics and hydrodynamics of self-propulsion. J. Exp. Biol. 2007, 210, 2767–2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neveln, I.D.; Bai, Y.; Snyder, J.B.; Solberg, J.R.; Curet, O.M.; Lynch, K.M.; MacIver, M.A. Biomimetic and bio-inspired robotics in electric fish research. J. Exp. Biol. 2013, 216, 2501–2514. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Low, K.H. Design and locomotion control of a biomimetic underwater vehicle with fin propulsion. IEEE/ASME Trans. Mechatron. 2011, 17, 25–35. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Laue, D.M.; Davies, B.C. An experimental undulating-fin device using the parallel bellows actuator. In Proceedings of the 2001 ICRA, IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), Seoul, Republic of Korea, 21–26 May 2001; Volume 3, pp. 2356–2362. [Google Scholar]
- Vercruyssen, T.G.A. Phase Resolved PIV Analysis of an Undulating Fin: Experimental Investigation of the Galatea Propulsion Mechanism. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, August 2010. [Google Scholar]
- Niu, X.; Xu, J.; Ren, Q.; Wang, Q. Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Trans. Ind. Electron. 2013, 61, 4780–4787. [Google Scholar] [CrossRef]
- Wang, R.; Wang, S.; Wang, Y.; Tan, M.; Yu, J. A paradigm for path following control of a ribbon-fin propelled biomimetic underwater vehicle. IEEE Trans. Syst. Man Cybern. Syst. 2017, 49, 482–493. [Google Scholar] [CrossRef]
- Cui, R.; Chen, L.; Yang, C.; Chen, M. Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 2017, 64, 6785–6795. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, D.D.A.; Sørensen, A.J.; Pettersen, K.Y.; Donha, D.C. Output feedback motion control system for observation class ROVs based on a high-gain state observer: Theoretical and experimental result. Control. Eng. Pract. 2015, 39, 90–102. [Google Scholar] [CrossRef]
- Wan, L.; Zeng, J.; Li, Y.; Qin, H.; Zhang, L.; Wang, J. Neural observer-based path following control for underactuated unmanned surface vessels with input saturation and time-varying disturbance. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419878071. [Google Scholar] [CrossRef]
- Liu, L.; Wang, D.; Peng, Z.; Li, T.; Chen, C.P. Cooperative path following ring-networked under-actuated autonomous surface vehicles: Algorithms and experimental results. IEEE Trans. Cybern. 2018, 50, 1519–1529. [Google Scholar] [CrossRef]
- Lee, J.; Chang, H.J. Analysis of explicit model predictive control for path-following control. PLoS ONE 2018, 13, e0194110. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, J.; Liu, Z.; Wang, L.; Sun, T. Predictive control for straight path following of underactuated surface vessels with roll constraints. In Proceedings of the 2016 Chinese Control and Decision Conference (CCDC), Yinchuan, China, 28–30 May 2016; pp. 583–588. [Google Scholar]
- Helling, S.; Roduner, C.; Meurer, T. On the dual implementation of collision-avoidance constraints in path-following MPC for underactuated surface vessels. In Proceedings of the 2021 American Control Conference (ACC), New Orleans, LA, USA, 25–28 May 2021; pp. 3366–3371. [Google Scholar]
- Wang, Y.; Wang, R.; Wang, S.; Tan, M.; Yu, J. Underwater bioinspired propulsion: From inspection to manipulation. IEEE Trans. Ind. Electron. 2019, 67, 7629–7638. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, 1999. [Google Scholar]
- Zhang, Y.; Liu, X.; Luo, M.; Yang, C. MPC-based 3-D trajectory tracking for an autonomous underwater vehicle with constraints in complex ocean environments. Ocean. Eng. 2019, 189, 106309. [Google Scholar] [CrossRef]
- Long, C.; Qin, X.; Bian, Y.; Hu, M. Trajectory tracking control of ROVs considering external disturbances and measurement noises using ESKF-based MPC. Ocean. Eng. 2021, 241, 109991. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, D.; Hu, J.; Pan, Q. Nonlinear model predictive control-based guidance algorithm for quadrotor trajectory tracking with obstacle avoidance. J. Syst. Sci. Complex. 2021, 34, 1379–1400. [Google Scholar] [CrossRef]
- Yang, X.; Huang, Y. Capabilities of extended state observer for estimating uncertainties. In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 3700–3705. [Google Scholar]
- Gu, N.; Wang, D.; Peng, Z.; Wang, J.; Han, Q.L. Disturbance observers and extended state observers for marine vehicles: A survey. Control. Eng. Pract. 2022, 123, 105158. [Google Scholar] [CrossRef]
- Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Gao, Z. Scaling and bandwidth-parameterization based controller tuning. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June 2003; pp. 4989–4996. [Google Scholar]
- Li, Z.; Li, R.; Bu, R. Path following of under-actuated ships based on model predictive control with state observer. J. Mar. Sci. Technol. 2021, 26, 408–418. [Google Scholar] [CrossRef]
- Li, Z.; Bu, R. Trajectory tracking of under-actuated ships based on optimal sliding mode control with state observer. Ocean. Eng. 2021, 233, 109186. [Google Scholar] [CrossRef]
- Kamel, M.; Alonso-Mora, J.; Siegwart, R.; Nieto, J. Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 236–243. [Google Scholar]
- Mousazadeh, H.; Jafarbiglu, H.; Abdolmaleki, H.; Omrani, E.; Monhaseri, F.; Abdollahzadeh, M.R.; Mohammadi-Aghdam, A.; Kiapei, A.; Salmani-Zakaria, Y.; Makhsoos, A. Developing a navigation, guidance and obstacle avoidance algorithm for an Unmanned Surface Vehicle (USV) by algorithms fusion. Ocean. Eng. 2018, 159, 56–65. [Google Scholar] [CrossRef]
- Rao, A.V. A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 2009, 135, 497–528. [Google Scholar]
- Andersson, J.A.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and optimal control. Math. Program. Comput. 2019, 11, 1–36. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Mass | 55 kg | Buoyancy | 54.3 kg |
Manipulator mass | 2.5 kg | Fin length | 0.58 m |
Length | 0.95 m | Maximum frequency | 20 Hz |
Width | 0.7 m | Maximum linear velocity | 0.43 m |
Height | 0.6 m | Maximum steering speed | 0.89 rad/s |
Number of Obstacles | Without Priori (Predicted) | With Priori (Predicted) | ||||
---|---|---|---|---|---|---|
Clearance Mean (m) | Traveled Distance Mean (m) | %Failures (Collisions) | Clearance Mean (m) | Traveled Distance Mean (m) | %Failures (Collisions) | |
1 | 0.0487 | 11.6114 | 60% | 0.3100 | 11.4018 | 100% |
2 | 0.0172 | 10.7272 | 20% | 0.3245 | 10.8660 | 90% |
3 | 0.0574 | 10.8160 | 20% | 0.3295 | 11.3869 | 60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Dong, X.; Wang, Y.; Wang, S. Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System. Sensors 2023, 23, 7061. https://doi.org/10.3390/s23167061
He Y, Dong X, Wang Y, Wang S. Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System. Sensors. 2023; 23(16):7061. https://doi.org/10.3390/s23167061
Chicago/Turabian StyleHe, Yanbing, Xiang Dong, Yu Wang, and Shuo Wang. 2023. "Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System" Sensors 23, no. 16: 7061. https://doi.org/10.3390/s23167061
APA StyleHe, Y., Dong, X., Wang, Y., & Wang, S. (2023). Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System. Sensors, 23(16), 7061. https://doi.org/10.3390/s23167061