A Performance Improvement for Indoor Positioning Systems Using Earth’s Magnetic Field
Abstract
:1. Introduction
2. Related Works
3. System Architecture
3.1. Combination of RSSI and Magnetic Field Strength
3.2. Offline Procedure
3.3. Online Procedure
3.4. Area Partitioning Methods
3.5. Rotation Matrix for Geographic Coordinates
3.6. Sensing Differences in Mobile Phones
4. Experimental Environment and Test Procedures
4.1. RSSI Measurement and Online Calculation
4.2. Magnetic Field Strength Measurement and Online Calculation
5. Experimental Results
5.1. Positioning Errors under Different Area-Dividing Methods
5.2. Calibration Results for Different Brands of Magnetic Field Sensors
5.3. Efficiency Discussion and Experiment Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahl, P.; Padmanabhan, V.N. Enhancements to the RADAR User Location and Tracking System; Microsoft Research: Seattle, WA, USA, 2008. [Google Scholar]
- Liu, W.; Zhang, Y.; Deng, Z.; Zhou, H. Low-Cost Indoor Wireless Fingerprint Location Database Construction Methods: A Review. IEEE Access 2023, 11, 37535–37545. [Google Scholar] [CrossRef]
- Fazzinga, B.; Flesca, S.; Furfaro, F.; Parisi, F. Exploiting Integrity Constraints for Cleaning Trajectories of RFID-Monitored Objects. ACM Trans. Database Syst. 2016, 41, 1–52. [Google Scholar] [CrossRef]
- Wang, J.; LE, J. Research Progress of RFID Data Cleaning Technology. J. Front. Comput. Sci. Technol. 2022, 16, 2678–2694. [Google Scholar] [CrossRef]
- Baba, A.I.; Lu, H.; Pedersen, T.B.; Xie, X. Handling false negatives in indoor RFID data. In Proceedings of the 2014 15th IEEE International Conference on Mobile Data Management, Brisbane, QLD, Australia, 15–18 July 2014. [Google Scholar] [CrossRef]
- Fazzinga, B.; Flesca, S.; Furfaro, F.; Parisi, F. Interpreting RFID tracking data for simultaneously moving objects: An offline sampling-based approach. Expert Syst. Appl. 2020, 152, 113368. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Ravindranath, L.; LaCurts, K.; Madden, S.; Balakrishnan, H.; Toledo, S.; Eriksson, J. VTrack: Accurate, energy-aware road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems (SenSys), Berkeley, CA, USA, 4–6 November 2009. [Google Scholar] [CrossRef]
- Brzozowski, B.; Kaźmierczak, K. Magnetic Field Mapping as a Support for UAV Indoor Navigation System. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017. [Google Scholar] [CrossRef]
- Grisales Campeón, J.P.; López, S.; de Jesús Meleán, S.R.; Moldovan, H.; Parisi, D.R.; Fierens, P.I. Indoor Positioning Based on RSSI of WiFi Signals: How Accurate Can It Be? In Proceedings of the 2018 IEEE Biennial Congress of Argentina, ARGENCON, Seccion, San Miguel de Tucuman, Argentina, 6–8 June 2018. [Google Scholar] [CrossRef]
- Harrington, P. Machine Learning in Action; Manning Publications: Shelter Island, NY, USA, 2008; ISBN 978-1-61729-018-3. [Google Scholar]
- Zhao, H.; Huang, B.; Jia, B. Applying Kriging Interpolation for WiFi Fingerprinting Based Indoor Positioning Systems. In Proceedings of the 2016 IEEE WCNC, Doha, Qatar, 3–6 April 2016. [Google Scholar] [CrossRef]
- Dong, Y.; Arslan, T.; Yang, Y.; Ma, Y. A WiFi Fingerprint Augmentation Method for 3-D Crowdsourced Indoor Positioning Systems. In Proceedings of the 2022 IEEE IPIN, Beijing, China, 5–8 September 2022. [Google Scholar] [CrossRef]
- Zou, H.; Chen, C.-L.; Li, M.; Yang, J.; Zhou, Y.; Xie, L.; Spanos, C.J. Adversarial Learning-Enabled Automatic WiFi Indoor Radio Map Construction and Adaptation with Mobile Robot. IEEE Internet Things J. 2020, 7, 6946–6954. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.; Richter, P.; Torres-Sospedra, J.; Lohan, E.; Huerta, J. Long-Term WiFi Fingerprinting Dataset for Research on Robust Indoor Positioning. Data 2018, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Lee, D.H.; Chang, K.; Li, W.; Acharya, T.D.; Lohan, E.; Huerta, J. Development of Mobile Platform for Indoor Positioning Reference Map Using Geomagnetic Field Data. Comput. Electr. Eng. 2018, 68, 557–569. [Google Scholar] [CrossRef]
- Kim, H.-S.; Seo, W.; Baek, K.-R. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System. Sensors 2017, 17, 651. [Google Scholar] [CrossRef] [PubMed]
- Haryanto, D.K.; Karyono, K.; Hutagalung, S. The Comparison Between Geo magnetism and WiFi for Indoor Positioning System for Public Places. In Proceedings of the 2018 IEEE Robionetics, Bandung, Indonesia, 8–10 August 2018. [Google Scholar]
- Yeh, S.-C.; Hsu, W.-H.; Lin, W.-Y.; Wu, Y.-F. Study on an Indoor Positioning System Using Earth’s Magnetic Field. IEEE Trans. Instrum. Meas. 2020, 69, 865–872. [Google Scholar] [CrossRef]
- Kang, R.; Cao, L. Smartphone Indoor Positioning System Based on Geomagnetic Field. In Proceedings of the 2017 Chinese Automation Congress, Jinan, China, 20–22 October 2017. [Google Scholar] [CrossRef]
- Ning, F.-S.; Chen, Y.-C. Combining a Modified Particle Filter Method and Indoor Magnetic Fingerprint Map to Assist Pedestrian Dead Reckoning for Indoor Positioning and Navigation. Sensors 2020, 20, 185. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.-A.; Wang, G.; Qin, D.; Na, Z.; Cui, Y.; Chen, J. Continuous Indoor Positioning Fusing WiFi, Smartphone Sensors and Land-marks. Sensors 2016, 16, 1427. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhuang, Y.; Lan, H.; Zhou, Q.; Niu, X.; El-Sheimy, N. A Hybrid WiFi/Magnetic Matching/PDR Approach for Indoor Navigation with Smartphone Sensors. IEEE Commun. Lett. 2016, 20, 169–172. [Google Scholar] [CrossRef]
- Lynch, K.M.; Park, F.C. Modern Robotics: Mechanics; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-10715-630-2. [Google Scholar]
- Kim, P.; Chae, H.G. Rigid Body Dynamics for Beginners: Euler Angles & Quaternions; Createspace Independent Publishing Platform: Cambridge, UK, 2013; ISBN 978-1-49359-820-5. [Google Scholar]
- Paul, R.P. Robot Manipulators: Mathematics, Programming, and Control; MIT Press: Cambridge, MA, USA, 1981; ISBN 978-0-26216-082-7. [Google Scholar]
- Android for Developers: SensorManager. Available online: http://developer.android.com/reference/android/hardware/SensorManager (accessed on 20 April 2021).
Applied Methods in Proposed Work | Proposed Work | [18] | [19] | [20] | [21] | [22] |
---|---|---|---|---|---|---|
The Earth’s Magnetic Field for Indoor Positioning | Yes | Yes | Yes | Yes | No | Yes |
Use Wi-Fi Signal Strength to Perform Indoor Partitioning Technology with KNN | Yes | No | No | Yes | Yes (PDR) | Yes (PDR) |
Use the Rotation Matrix to Normalize the Coordinates of the Geomagnetic Field Strength | Yes | No | Yes | No | No | No |
Offline and Online System Operation Procedure | Yes | No | Yes | No | No | No |
Area Partitioning | Yes | Yes | No | No | No | No |
Smartphone Model | Operating System | Magnetometer | Magnetometer Manufacturer |
---|---|---|---|
Mi Lite8 | Android 10 | Ak09918 | AKM |
Asus Zenfone6 | Android 11 | Ak0991x | AKM |
Google Pixel3 | Android 10 | LIS2MDL | STMicro |
Samsung Galaxy A8+ | Android 9 | Ak09918 | AKM |
HTC A9 | Android 7 | HTC Corp. | HTC Corp. |
Number of Area | 1 | 4 | 6 | 12 |
---|---|---|---|---|
Mean Positioning Error | 5.47 m | 2.18 m | 0.93 m | 0.57 m |
Number of Areas | 4 | 12 |
---|---|---|
Proposed method | 2.18 m | 0.57 m |
EMF | 2.00 m | Not available |
Number of Areas | 1 | 4 | 6 | 12 |
---|---|---|---|---|
Average positioning errors | 8.73 m | 1.56 m | 1.49 m | 1.36 m |
Angle | |||
---|---|---|---|
Mean positioning error of the initial coordinate | 0.57 m | 3.26 m | 3.41 m |
Mean positioning error of the conversion coordinate | 1.36 m | 1.05 m | 1.18 m |
Smartphone Model | Mi Lite8 | HTC A9 | Asus Zenfone6 | Google Pixel3 | Samsung Galaxy A8+ |
---|---|---|---|---|---|
Average positioning error | 0.57 m | 0.86 m | 0.41 m | 0.83 m | 1.15 m |
Smartphone Model | Mi Lite8 | HTC A9 | Asus Zenfone6 | Google Pixel3 | Samsung Galaxy A8+ |
---|---|---|---|---|---|
Average positioning error | 1.36 m | 1.96 m | 0.96 m | 0.80 m | 1.44 m |
Distance between Reference Point | 1 m | 2 m | 3 m |
---|---|---|---|
Average positioning error of the device related coordinates | 0.57 m | 1.28 m | 1.33 m |
Average positioning error of the converted coordinates | 1.36 m | 1.57 m | 1.88 m |
Distance between Reference Point | 1 m | 2 m | 3 m |
---|---|---|---|
Average positioning error of the original coordinates | 0.57 m | 1.50 m | 2.94 m |
Average positioning error of the converted coordinates | 1.36 m | 1.77 m | 2.89 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, S.-C.; Chiu, H.-C.; Kao, C.-Y.; Wang, C.-H. A Performance Improvement for Indoor Positioning Systems Using Earth’s Magnetic Field. Sensors 2023, 23, 7108. https://doi.org/10.3390/s23167108
Yeh S-C, Chiu H-C, Kao C-Y, Wang C-H. A Performance Improvement for Indoor Positioning Systems Using Earth’s Magnetic Field. Sensors. 2023; 23(16):7108. https://doi.org/10.3390/s23167108
Chicago/Turabian StyleYeh, Sheng-Cheng, Hsien-Chieh Chiu, Chih-Yang Kao, and Chia-Hui Wang. 2023. "A Performance Improvement for Indoor Positioning Systems Using Earth’s Magnetic Field" Sensors 23, no. 16: 7108. https://doi.org/10.3390/s23167108
APA StyleYeh, S. -C., Chiu, H. -C., Kao, C. -Y., & Wang, C. -H. (2023). A Performance Improvement for Indoor Positioning Systems Using Earth’s Magnetic Field. Sensors, 23(16), 7108. https://doi.org/10.3390/s23167108