The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Equipment
2.4. Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blum, Y.; Lipfert, S.W.; Seyfarth, A. Effective Leg Stiffness in Running. J. Biomech. 2009, 42, 2400–2405. [Google Scholar] [CrossRef]
- Chapman, R.F.; Laymon, A.S.; Wilhite, D.P.; Mckenzie, J.M.; Tanner, D.A.; Stager, J.M. Ground Contact Time as an Indicator of Metabolic Cost in Elite Distance Runners. Med. Sci. Sports Exerc. 2012, 44, 917–925. [Google Scholar] [CrossRef]
- Kram, R.; Taylor, C.R. Energetics of Running: A New Perspective. Nature 1990, 346, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Mooses, M.; Haile, D.W.; Ojiambo, R.; Sang, M.; Mooses, K.; Lane, A.R.; Hackney, A.C. Shorter Ground Contact Time and Better Running Economy: Evidence from Female Kenyan Runners. J. Strength Cond. Res. 2021, 35, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Santos-Concejero, J.; Granados, C.; Irazusta, J.; Bidaurrazaga-Letona, I.; Zabala-Lili, J.; Tam, N.; Gil, S. Differences in Ground Contact Time Explain the Less Efficient Running Economy in North African Runners. Biol. Sport 2013, 30, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Tam, N.; Tucker, R.; Santos-Concejero, J.; Prins, D.; Lamberts, R.P. Running Economy: Neuromuscular and Joint-Stiffness Contributions in Trained Runners. Int. J. Sports Physiol. Perform. 2019, 14, 16–22. [Google Scholar] [CrossRef]
- Santos-Concejero, J.; Oliván, J.; Maté-Muñoz, J.L.; Muniesa, C.; Montil, M.; Tucker, R.; Lucia, A. Gait-Cycle Characteristics and Running Economy in Elite Eritrean and European Runners. Int. J. Sports Physiol. Perform. 2015, 10, 381–387. [Google Scholar] [CrossRef]
- Santos-Concejero, J.; Tam, N.; Coetzee, D.R.; Oliván, J.; Noakes, T.D.; Tucker, R. Are Gait Characteristics and Ground Reaction Forces Related to Energy Cost of Running in Elite Kenyan Runners? J. Sports Sci. 2016, 35, 531–538. [Google Scholar] [CrossRef]
- Joubert, D.P.; Guerra, N.A.; Jones, E.J.; Knowles, E.G.; Piper, A.D. Ground Contact Time Imbalances Strongly Related to Impaired Running Economy. Int. J. Exerc. Sci. 2020, 13, 427–437. [Google Scholar]
- Nummela, A.; Hämäläinen, I.; Rusko, H. Comparison of Maximal Anaerobic Running Tests on a Treadmill and Track. J. Sports Sci. 2007, 25, 87–96. [Google Scholar] [CrossRef]
- Chan-Roper, M.; Hunter, I.; Myrer, J.W.; Eggett, D.L.; Seeley, M.K. Kinematic Changes during a Marathon for Fast and Slow Runners. J. Sports Sci. Med. 2012, 11, 77–82. [Google Scholar]
- Blauberger, P.; Horsch, A.; Lames, M. Detection of Ground Contact Times with Inertial Sensors in Elite 100-m Sprints under Competitive Field Conditions. Sensors 2021, 21, 7331. [Google Scholar] [CrossRef] [PubMed]
- Patoz, A.; Lussiana, T.; Gindre, C.; Malatesta, D. A Novel Kinematic Detection of Foot-Strike and Toe-off Events during Noninstrumented Treadmill Running to Estimate Contact Time. J. Biomech. 2021, 128, 110737. [Google Scholar] [CrossRef]
- Smith, L.; Preece, S.; Mason, D.; Bramah, C. A Comparison of Kinematic Algorithms to Estimate Gait Events during Overground Running. Gait Posture 2015, 41, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouhani, H.; Abe, M.O.; Nakazawa, K.; Popovic, M.R.; Masani, K. Heel Strike Detection Using Split Force-Plate Treadmill. Gait Posture 2015, 41, 863–866. [Google Scholar] [CrossRef] [PubMed]
- DeBerardinis, J.; Dufek, J.S.; Trabia, M.B.; Lidstone, D.E. Assessing the Validity of Pressure-Measuring Insoles in Quantifying Gait Variables. J. Rehabil. Assist. Technol. Eng. 2018, 5, 205566831775208. [Google Scholar] [CrossRef] [Green Version]
- El Kati, R.; Forrester, S.; Fleming, P. Evaluation of Pressure Insoles during Running. Procedia Eng. 2010, 2, 3053–3058. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Joshi, D. An Infrared Sensor-Based Instrumented Shoe for Gait Events Detection on Different Terrains and Transitions. IEEE Sens. J. 2020, 20, 10779–10791. [Google Scholar] [CrossRef]
- Alvim, F.; Cerqueira, L.; Netto, A.D.; Leite, G.; Muniz, A. Comparison of Five Kinematic-Based Identification Methods of Foot Contact Events During Treadmill Walking and Running at Different Speeds. J. Appl. Biomech. 2015, 31, 383–388. [Google Scholar] [CrossRef]
- Fellin, R.E.; Rose, W.C.; Royer, T.D.; Davis, I.S. Comparison of Methods for Kinematic Identification of Footstrike and Toe-off during Overground and Treadmill Running. J. Sci. Med. Sport 2010, 13, 646–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hreljac, A.; Stergiou, N. Phase Determination during Normal Running Using Kinematic Data. Med. Biol. Eng. Comput. 2000, 38, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Handsaker, J.C.; Forrester, S.E.; Folland, J.P.; Black, M.I.; Allen, S.J. A Kinematic Algorithm to Identify Gait Events during Running at Different Speeds and with Different Footstrike Types. J. Biomech. 2016, 49, 4128–4133. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.C.; Wong, K.I.; Murray, I. Gait Phase Detection for Normal and Abnormal Gaits Using IMU. IEEE Sens. J. 2019, 19, 3439–3448. [Google Scholar] [CrossRef]
- Running Dynamics Pod. Available online: https://www.garmin.com/sl-SI/p/561205 (accessed on 15 February 2023).
- González, L.; López, A.M.; Álvarez, D.; Álvarez, J.C. Estimation of Ground Contact Time with Inertial Sensors from the Upper Arm and the Upper Back. Sensors 2023, 23, 2523. [Google Scholar] [CrossRef]
- Falbriard, M.; Meyer, F.; Mariani, B.; Millet, G.P.; Aminian, K. Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors. Front. Physiol. 2018, 9, 610. [Google Scholar] [CrossRef] [Green Version]
- Benson, L.; Clermont, C.; Watari, R.; Exley, T.; Ferber, R. Automated Accelerometer-Based Gait Event Detection During Multiple Running Conditions. Sensors 2019, 19, 1483. [Google Scholar] [CrossRef] [Green Version]
- Watari, R.; Hettinga, B.; Osis, S.; Ferber, R. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running. J. Appl. Biomech. 2016, 32, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.; Chow, D.H.K. Accuracy of Three Methods in Gait Event Detection during Overground Running. Gait Posture 2018, 59, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Chew, D.-K.; Ngoh, K.J.-H.; Gouwanda, D.; Gopalai, A.A. Estimating Running Spatial and Temporal Parameters Using an Inertial Sensor. Sports Eng. 2018, 21, 115–122. [Google Scholar] [CrossRef]
- Bergamini, E.; Picerno, P.; Pillet, H.; Natta, F.; Thoreux, P.; Camomilla, V. Estimation of Temporal Parameters during Sprint Running Using a Trunk-Mounted Inertial Measurement Unit. J. Biomech. 2012, 45, 1123–1126. [Google Scholar] [CrossRef] [Green Version]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Malatesta, D. A Single Sacral-Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction Force, Contact Time, and Flight Time in Running. Sensors 2022, 22, 784. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Fuss, F.K.; Holmberg, H.-C.; Sperlich, B. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR mHealth uHealth 2018, 6, e102. [Google Scholar] [CrossRef] [PubMed]
- Sperlich, B.; Holmberg, H.-C. Wearable, Yes, but Able…?: It Is Time for Evidence-Based Marketing Claims! Br. J. Sports Med. 2017, 51, 1240. [Google Scholar] [CrossRef] [PubMed]
- Jurak, G.; Morrison, S.A.; Kovač, M.; Leskošek, B.; Sember, V.; Strel, J.; Starc, G. A COVID-19 Crisis in Child Physical Fitness: Creating a Barometric Tool of Public Health Engagement for the Republic of Slovenia. Front. Public Health 2021, 9, 644235. [Google Scholar] [CrossRef]
- Park, A.H.; Zhong, S.; Yang, H.; Jeong, J.; Lee, C. Impact of COVID-19 on Physical Activity: A Rapid Review. J. Glob. Health 2022, 12, 05003. [Google Scholar] [CrossRef]
- Giuntella, O.; Hyde, K.; Saccardo, S.; Sadoff, S. Lifestyle and Mental Health Disruptions during COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2016632118. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B.; Coca, A. Physical Activity Change during COVID-19 Confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef]
- Romero, J.L.; Lv, Q. Global Impact of COVID-19 Pandemic on Physical Activity Habits of Competitive Runners: An Analysis of Wearable Device Data. Int. J. Environ. Res. Public Health 2022, 19, 12933. [Google Scholar] [CrossRef]
- Matthies, D.J.C.; Harder, T.; Bretterbauer, F.; Ginter, V.; Hellbrück, H. FitFone: Tracking Home Workout in Pandemic Times. In Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 29 June 2021; pp. 272–276. [Google Scholar]
- Mason, R.; Pearson, L.T.; Barry, G.; Young, F.; Lennon, O.; Godfrey, A.; Stuart, S. Wearables for Running Gait Analysis: A Systematic Review. Sports Med. 2023, 53, 241–268. [Google Scholar] [CrossRef]
- Teichmann, J.; Hébert-Losier, K.; Tan, R.; Lem, H.W.; Khanum, S.; Subramaniam, A.; Yeo, W.-K.; Schmidtbleicher, D.; Beaven, C.M. Reactive Strength as a Metric for Informing Return-to-Sport Decisions: A Case-Control Study. J. Sport Rehabil. 2022, 31, 47–52. [Google Scholar] [CrossRef]
- Saito, A.; Kizawa, S.; Kobayashi, Y.; Miyawaki, K. Pose Estimation by Extended Kalman Filter Using Noise Covariance Matrices Based on Sensor Output. Robomech. J. 2020, 7, 36. [Google Scholar] [CrossRef]
- Dahl, K.D.; Dunford, K.M.; Wilson, S.A.; Turnbull, T.L.; Tashman, S. Wearable Sensor Validation of Sports-Related Movements for the Lower Extremity and Trunk. Med. Eng. Phys. 2020, 84, 144–150. [Google Scholar] [CrossRef]
- Yaghoubi, M.; Fink, P.W.; Page, W.H.; Shultz, S.P. Stationary Exercise in Overweight and Normal Weight Children. Pediatr. Exerc. Sci. 2019, 31, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Measuring Agreement in Method Comparison Studies. Stat. Methods Med. Res. 1999, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, A.; Wader, M.; Pearson, S. Validation of Contact Time, Step Rate, and Vertical Oscillation as Determined by the Garmin HRM-Run System; High Performance Sport New Zealand: Auckland, New Zealand, 2016. [Google Scholar]
- Adams, D.; Pozzi, F.; Carroll, A.; Rombach, A.; Zeni, J. Validity and Reliability of a Commercial Fitness Watch for Measuring Running Dynamics. J. Orthop. Sports Phys. Ther. 2016, 46, 471–476. [Google Scholar] [CrossRef] [Green Version]
- Topley, M.; Richards, J.G. A Comparison of Currently Available Optoelectronic Motion Capture Systems. J. Biomech. 2020, 106, 109820. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Y.; Hu, X.; Tang, M.; Wang, L. Validity and Reliability of Inertial Measurement Units on Lower Extremity Kinematics During Running: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 86. [Google Scholar] [CrossRef]
- Verdel, N.; Drobnič, M.; Maslik, J.; Björnander Rahimi, K.; Tantillo, G.; Gumiero, A.; Hjort, K.; Holmberg, H.-C.; Supej, M. A Comparison of a Novel Stretchable Smart Patch for Measuring Runner’s Step Rates with Existing Measuring Technologies. Sensors 2022, 22, 4897. [Google Scholar] [CrossRef]
Step Rate | FP [ms] | MoCap [ms] | Garmin [ms] | Mean Bias [ms] | p-Value | LoA [ms] |
---|---|---|---|---|---|---|
Low | 377.1 ± 52.0 | 406.7 ± 59.6 | / | 29.6 ± 18.2 | <0.001 * | −5.7 to 60.5 |
368.6 ± 39.4 | / | 249.0 ± 27.4 | −119.6 ± 31.2 | <0.001 * | −184.8 to −74.8 | |
Medium | 321.9 ± 55.5 | 343.2 ± 64.0 | / | 21.3 ± 17.2 | <0.001 * | −14.2 to 51.3 |
316.1 ± 43.2 | / | 214.9 ± 32.6 | −101.2 ± 28.4 | <0.001 * | −155.8 to −55.9 | |
High | 255.9 ± 54.5 | 267.4 ± 60.9 | / | 11.5 ± 14.4 | <0.001 * | −15.2 to 38.4 |
267.8 ± 50.9 | / | 186.3 ± 46.7 | −81.5 ± 18.4 | <0.001 * | −199.8 to −47.8 | |
All | 311.6 ± 73.6 | 331.4 ± 84.1 | / | 19.8 ± 18.1 | <0.001 * | −14.2 to 56.2 |
316.3 ± 61.0 | / | 216.0 ± 44.8 | −100.3 ± 30.7 | <0.001 * | −165.0 to −54.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drobnič, M.; Verdel, N.; Holmberg, H.-C.; Supej, M. The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place. Sensors 2023, 23, 7155. https://doi.org/10.3390/s23167155
Drobnič M, Verdel N, Holmberg H-C, Supej M. The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place. Sensors. 2023; 23(16):7155. https://doi.org/10.3390/s23167155
Chicago/Turabian StyleDrobnič, Miha, Nina Verdel, Hans-Christer Holmberg, and Matej Supej. 2023. "The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place" Sensors 23, no. 16: 7155. https://doi.org/10.3390/s23167155
APA StyleDrobnič, M., Verdel, N., Holmberg, H. -C., & Supej, M. (2023). The Validity of a Three-Dimensional Motion Capture System and the Garmin Running Dynamics Pod in Connection with an Assessment of Ground Contact Time While Running in Place. Sensors, 23(16), 7155. https://doi.org/10.3390/s23167155