Edge Detection of Motion-Blurred Images Aided by Inertial Sensors
Abstract
:1. Introduction
- The sensor data with errors are transformed into blur kernel with errors, and we apply a TLS-based iterative optimization scheme to handle the image deblurring problem involving blur kernel errors, whose relating priors are learned by two types of neural networks. The inclusion of the blur kernel with sensor data error information in the training process makes the final deblurring method strongly robust.
- The canny edge detection algorithm is incorporated into the deblurring process for calculation of the final loss function. By coupling the edge detection task and the deblurring iterative process more tightly, we ensure that the edge detection task achieves higher accuracy through the image deblurring process.
- The BSDS500 edge detection dataset and an independent inertial sensor dataset are combined to create a synthetic dataset for edge detection of motion-blurred images. The results for the synthetic dataset demonstrates the effectiveness and robustness of the proposed method.
2. Related Work
3. Method
3.1. Initial Kernel Estimation
3.2. TLS-Based Iterative Optimization Scheme for Blur Kernel with Errors
Algorithm 1: Deblurring Assisted by Inertial Sensors |
Input: gyroscope data , accelerometer data , blurred image g Output: deblurred image f Procedure: |
|
3.3. Overall Network Structure with Canny Edge Detection Algorithm Added
3.4. Synthetic Dataset of Motion-Blurred Images with Inertial Sensor Data
4. Experiments
4.1. Experimental Setup
4.2. Ablation Study
4.3. Performance Evaluation and Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aquino, A.; Gegundez-Arias, M.E.; Marin, D. Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 2010, 29, 1860–1869. [Google Scholar] [PubMed] [Green Version]
- Maninis, K.K.; Pont-Tuset, J.; Arbelaez, P.; Van Gool, L. Convolutional Oriented Boundaries: From Image Segmentation to High-Level Tasks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 819–833. [Google Scholar] [PubMed] [Green Version]
- Rasche, C. Rapid contour detection for image classification. IET Image Process. 2018, 12, 532–538. [Google Scholar] [CrossRef]
- Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8693, pp. 391–405. [Google Scholar]
- Fergus, R.; Singh, B.; Hertzmann, A.; Roweis, S.T.; Freeman, W.T. Removing camera shake from a single photograph. In Acm Siggraph 2006 Papers; ACM Digital Library: New York, NY, USA, 2006; pp. 787–794. [Google Scholar]
- Shan, Q.; Jia, J.; Agarwala, A. High-quality motion deblurring from a single image. ACM Trans. Graph. 2008, 27, 1–10. [Google Scholar]
- Xu, L.; Jia, J. Two-phase kernel estimation for robust motion deblurring. In Proceedings of the Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6311, pp. 157–170. [Google Scholar]
- Whyte, O.; Sivic, J.; Zisserman, A. Deblurring shaken and partially saturated images. Int. J. Comput. Vis. 2014, 110, 185–201. [Google Scholar]
- Joshi, N.; Kang, S.B.; Zitnick, C.L.; Szeliski, R. Image deblurring using inertial measurement sensors. ACM Trans. Graph. 2010, 29, 1–9. [Google Scholar]
- Joshi, N.; Zitnick, C.L.; Szeliski, R.; Kriegman, D.J. Image deblurring and denoising using color priors. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1550–1557. [Google Scholar]
- Budd, J.; van Gennip, Y.; Latz, J.; Parisotto, S.; Schönlieb, C.-B. Joint reconstruction-segmentation on graphs. arXiv 2022, arXiv:2208.05834 2022. [Google Scholar]
- Cai, J.-F.; Ji, H.; Liu, C.; Shen, Z. Blind motion deblurring from a single image using sparse approximation. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 104–111. [Google Scholar]
- Hu, Z.; Yuan, L.; Lin, S.; Yang, M.-H. Image deblurring using smartphone inertial sensors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1855–1864. [Google Scholar]
- Hee Park, S.; Levoy, M. Gyro-based multi-image deconvolution for removing handshake blur. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3366–3373. [Google Scholar]
- Šindelář, O.; Šroubek, F. Image deblurring in smartphone devices using built-in inertial measurement sensors. J. Electron. Imaging 2013, 22, 011003. [Google Scholar] [CrossRef]
- Zhang, Y.; Hirakawa, K. Combining inertial measurements with blind image deblurring using distance transform. IEEE Trans. Comput. Imaging 2016, 2, 281–293. [Google Scholar]
- Mustaniemi, J.; Kannala, J.; Särkkä, S.; Matas, J.; Heikkila, J. Gyroscope-aided motion deblurring with deep networks. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 7–11 January 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1914–1922. [Google Scholar]
- Nan, Y.; Ji, H. Deep learning for handling kernel/model uncertainty in image deconvolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2388–2397. [Google Scholar]
- Adler, J.; Lunz, S.; Verdier, O.; Schönlieb, C.-B.; Öktem, O. Task adapted reconstruction for inverse problems. Inverse Probl. 2022, 38, 075006. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Feng, X. Joint image restoration and edge detection in cooperative game formulation. Signal Process. 2022, 191, 108363. [Google Scholar] [CrossRef]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhen, A.; Stevenson, R.L. A Dataset for Deep Image Deblurring Aided by Inertial Sensor Data. Electron. Imaging 2020, 32, 379-1–379-6. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980 2014. [Google Scholar]
- Vasu, S.; Maligireddy, V.R.; Rajagopalan, A. Non-blind deblurring: Handling kernel uncertainty with CNNs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3272–3281. [Google Scholar]
- Krishnan, D.; Fergus, R. Fast image deconvolution using hyper-Laplacian priors. Adv. Neural Inf. Process. Syst. 2009, 1033–1041. [Google Scholar]
- Kupyn, O.; Martyniuk, T.; Wu, J.; Wang, Z. Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8878–8887. [Google Scholar]
- Kruse, J.; Rother, C.; Schmidt, U. Learning to push the limits of efficient fft-based image deconvolution. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 4586–4594. [Google Scholar]
- Zhang, K.; Zuo, W.; Gu, S.; Zhang, L. Learning deep CNN denoiser prior for image restoration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3929–3938. [Google Scholar]
Method | ODS | OIS |
---|---|---|
w/o edge info | 0.558 | 0.585 |
with output edge info | 0.566 | 0.593 |
ours | 0.569 | 0.596 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, L.; Qiu, K.; Zhao, Y.; Wang, P. Edge Detection of Motion-Blurred Images Aided by Inertial Sensors. Sensors 2023, 23, 7187. https://doi.org/10.3390/s23167187
Tian L, Qiu K, Zhao Y, Wang P. Edge Detection of Motion-Blurred Images Aided by Inertial Sensors. Sensors. 2023; 23(16):7187. https://doi.org/10.3390/s23167187
Chicago/Turabian StyleTian, Luo, Kepeng Qiu, Yufeng Zhao, and Peng Wang. 2023. "Edge Detection of Motion-Blurred Images Aided by Inertial Sensors" Sensors 23, no. 16: 7187. https://doi.org/10.3390/s23167187
APA StyleTian, L., Qiu, K., Zhao, Y., & Wang, P. (2023). Edge Detection of Motion-Blurred Images Aided by Inertial Sensors. Sensors, 23(16), 7187. https://doi.org/10.3390/s23167187