In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array
Abstract
:1. Introduction
2. Lock-In Linear CCD Array Methods
- Input data adjustments. For the Y-axis visualization properties (setting minimum and maximum Y-axis values), the spectrometer data file (.EP1x) is imported, and all current files loaded are cleared.
- Data animation properties. The spectrometer input is 3-dimensional data: wavelength, amplitude, and time. Consequently, the input data are shown as animations, where the horizontal axis is the wavelength, the vertical axis is the amplitude, and each frame represents a step in time.
- The number of parallel processing fields containing the amount of simultaneous lock-in configuration and the width of the processing window are determined. The user can process a specific wavelength instead of the whole spectrum.
- The lock-in processing button that starts the functionality of lock-in processing is run, merging the lock-in parameters and the input data.
- Data export functionality allows the user to either export the final result of the lock-in processing (export output). It can be a two-dimensional (wavelength and normalized amplitude) text file or each intermediary step of the lock-in processing as a 3-dimensional text file (time, wavelength, and normalized amplitude).
- Processing parameters. The user can adjust all usual lock-in parameters, such as sampling period, time constant, reference signal modulation frequency, and phase (in case of no quadrature processing), and check a checkbox for quadrature processing (phase = 90°).
Experimental Setup
3. Results and Discussion
3.1. Validation Experiments
3.1.1. External Green LED Light Source
3.1.2. External White Noise
3.2. Outdoor Absorption Spectrum Analysis
3.3. Outdoor Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titus, D.; Samuel, E.J.J.; Roopan, S.M. Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 303–319. [Google Scholar]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear optics with 2D layered materials. Adv. Mater. 2018, 30, 1705963. [Google Scholar] [CrossRef] [PubMed]
- Prasankumar, R.P.; Taylor, A.J. Optical Techniques for Solid-State Materials Characterization; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Compton, S.V.; Compton, D.A. Optimization of data recorded by internal reflectance spectroscopy. In Practical Sampling Techniques for Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2020; pp. 55–92. [Google Scholar]
- O’Brien, D.; Rajbhandari, S.; Chun, H. Transmitter and receiver technologies for optical wireless. Philos. Trans. R. Soc. A 2020, 378, 20190182. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, N.C.; de Albuquerque, C.D.L.; Sobral-Filho, R.G.; Paci, I.; Brolo, A.G. High-speed imaging of surface-enhanced Raman scattering fluctuations from individual nanoparticles. Nat. Nanotechnol. 2019, 14, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Emmert, J.; Grauer, S.J.; Wagner, S.; Daun, K.J. Efficient Bayesian inference of absorbance spectra from transmitted intensity spectra. Opt. Express 2019, 27, 26893–26909. [Google Scholar] [CrossRef]
- Zhou, J.; Del Rosal, B.; Jaque, D.; Uchiyama, S.; Jin, D. Advances and challenges for fluorescence nanothermometry. Nat. Methods 2020, 17, 967–980. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Lan, Y.H.; Huang, C.S. A gradient grating period guided-mode resonance spectrometer. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, C.; Xia, G.; Jin, S.; Lu, H. Accurate wavelength calibration method for compact CCD spectrometer. JOSA A 2017, 34, 498–505. [Google Scholar] [CrossRef]
- Trabattoni, S.; Tavazzi, S.; Yivlialin, R.; Duò, L.; Ciccacci, F.; Bussetti, G. Application of UV-vis optical spectroscopy in electrochemical processes: Case-study of graphite anion intercalation. Appl. Opt. 2020, 59, 8175–8181. [Google Scholar] [CrossRef]
- Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Near-infrared (NIR) spectroscopy for motor oil classification: From discriminant analysis to support vector machines. Microchem. J. 2011, 98, 121–128. [Google Scholar] [CrossRef]
- Tugnolo, A.; Giovenzana, V.; Malegori, C.; Oliveri, P.; Casson, A.; Curatitoli, M.; Guidetti, R.; Beghi, R. A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. Food Control 2021, 130, 108312. [Google Scholar] [CrossRef]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-line application of near infrared (NIR) spectroscopy in food production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [Google Scholar] [CrossRef]
- Cavaco, A.M.; Utkin, A.B.; Marques da Silva, J.; Guerra, R. Making Sense of Light: The Use of Optical Spectroscopy Techniques in Plant Sciences and Agriculture. Appl. Sci. 2022, 12, 997. [Google Scholar] [CrossRef]
- Aggarwal, A. Felix Instruments. 2022. Available online: http://felixinstruments.com (accessed on 9 May 2022).
- Meade, M. Lock-In Amplifiers: Principles and Applications; Peter Peregrinus Ltd.: London, UK, 1983; pp. 1–4. [Google Scholar]
- Kloos, G. Applications of Lock-In Amplifiers in Optics; Society of Photo-Optical Instrumentation Engineers: Bellingham, WA, USA, 2018; pp. 5–24. [Google Scholar]
- Budding, R.; Strackee, L. A simple reference generator for lock-in amplifiers. J. Phys. Sci. Instrum. 1972, 5, 744. [Google Scholar] [CrossRef]
- Wang, X. Sensitive digital lock-in amplifier using a personal computer. Rev. Sci. Instrum. 1990, 61, 1999–2001. [Google Scholar] [CrossRef]
- De Marcellis, A.; Di Giansante, A.; Ferri, G.; Di Natale, C.; Martinelli, E.; D’Amico, A. Analog automatic lock-in amplifier for very low gas concentration detection. Procedia Eng. 2010, 5, 200–203. [Google Scholar] [CrossRef]
- Reverter, F.; Jordana, J.; Gasulla, M.; Pallàs-Areny, R. Accuracy and resolution of direct resistive sensor-to-microcontroller interfaces. Sens. Actuators A Phys. 2005, 121, 78–87. [Google Scholar] [CrossRef]
- Bengtsson, L.E. A microcontroller-based lock-in amplifier for sub-milliohm resistance measurements. Rev. Sci. Instrum. 2012, 83, 075103. [Google Scholar] [CrossRef]
- Marioli, D.; Sardini, E.; Taroni, A. Measurement of small capacitance variations. In Proceedings of the Conference on Precision Electromagnetic Measurements, Ottawa, ON, Canada, 11–14 June 1990; pp. 22–23. [Google Scholar]
- Franceschini, G.; Marioli, D. Measurement technique of low-level and low-frequency conductivity fluctuations. IEEE Trans. Instrum. Meas. 1985, IM-34, 466–468. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Yao, W.; Chen, W.; Lu, Z. Fast lock-in amplifier electrochemical impedance spectroscopy for big capacity lead-acid battery. J. Energy Storage 2021, 40, 102693. [Google Scholar] [CrossRef]
- Kim, J.; Abbasi, M.A.; Kim, T.; Park, K.D.; Cho, S. Lock-in amplifier-based impedance detection of tissue type using a monopolar injection needle. Sensors 2019, 19, 4614. [Google Scholar] [CrossRef] [PubMed]
- Maya, P.; Calvo, B.; Sanz-Pascual, M.T.; Osorio, J. Low Cost Autonomous Lock-In Amplifier for Resistance/Capacitance Sensor Measurements. Electronics 2019, 8, 1413. [Google Scholar] [CrossRef]
- Sukekawa, Y.; Nakamoto, T. Odor biosensor system based on image lock-in measurement for odorant discrimination. Electron. Commun. Jpn. 2019, 102, 57–64. [Google Scholar] [CrossRef]
- Viswam, V.; Bounik, R.; Shadmani, A.; Dragas, J.; Urwyler, C.; Boos, J.A.; Obien, M.E.J.; Müller, J.; Chen, Y.; Hierlemann, A. Impedance spectroscopy and electrophysiological imaging of cells with a high-density CMOS microelectrode array system. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1356–1368. [Google Scholar] [CrossRef]
- Ferrari, G.; Carminati, M. Advanced instrumentation for high-resolution capacitance and impedance measurements. In Capacitance Spectroscopy of Semiconductors; Pan Stanford Publishing Pte. Ltd.: Singapore, 2018; p. 149. [Google Scholar]
- Li, S.; Sun, L. Measurement of broadband absorbers in the near-infrared region based on Wavelength Modulation United Absorption Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119127. [Google Scholar] [CrossRef]
- Liang, W.; Wei, G.; He, A.; Shen, H. A novel wavelength modulation spectroscopy in TDLAS. Infrared Phys. Technol. 2021, 114, 103661. [Google Scholar] [CrossRef]
- Supplee, J.M.; Whittaker, E.A.; Lenth, W. Theoretical description of frequency modulation and wavelength modulation spectroscopy. Appl. Opt. 1994, 33, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Rieker, G.B.; Liu, X.; Jeffries, J.B.; Hanson, R.K. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases. Appl. Opt. 2006, 45, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Bu, X.; Cao, Y.; Song, Y. A methane telemetry sensor based on near-infrared laser absorption spectroscopy. Infrared Phys. Technol. 2021, 114, 103670. [Google Scholar] [CrossRef]
- Hangauer, A.; Chen, J.; Strzoda, R.; Amann, M.C. Multi-harmonic detection in wavelength modulation spectroscopy systems. Appl. Phys. B 2013, 110, 177–185. [Google Scholar] [CrossRef]
- de Lima, R.A.; Soares, V.H.; Martins-Filho, J.F.; Fontana, E. Tailoring a spectral line detection system for applications in dissolved gas analysis. Sens. Actuators A Phys. 2019, 293, 178–188. [Google Scholar] [CrossRef]
- Kishore, K.; Akbar, S. Evolution of lock-in amplifier as portable sensor interface platform: A review. IEEE Sens. J. 2020, 20, 10345–10354. [Google Scholar] [CrossRef]
- De Marcellis, A.; Ferri, G.; D’Amico, A.; Di Natale, C.; Martinelli, E. A fully-analog lock-in amplifier with automatic phase alignment for accurate measurements of ppb gas concentrations. IEEE Sens. J. 2011, 12, 1377–1383. [Google Scholar] [CrossRef]
- Sciortino, G.; Ragni, A.; De la Cadena, A.; Sampietro, M.; Cerullo, G.; Polli, D.; Ferrari, G. Four-Channel Differential Lock-in Amplifiers with Autobalancing Network for Stimulated Raman Spectroscopy. IEEE J. Solid-State Circuits 2021, 56, 1859–1870. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, C.; Huang, Z. Quadrature demodulation based on lock-in amplifier technique for self-mixing interferometry displacement sensor. Appl. Opt. 2019, 58, 6098–6104. [Google Scholar] [CrossRef]
- Garcia, D.E.; Zheng, K.W.; Tao, Y.S.; Liu, Y.; Mann, S. Capturing pictures from human vision using SSVEP and lock-in amplifier. In Proceedings of the 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 7–10 November 2020; pp. 172–179. [Google Scholar]
- Nadgir, A.; Thurston, R.; Larsen, K.A.; Shivaram, N.; Brister, M.M.; Slaughter, D.S. SILIA: Software implementation of a multi-channel, multi-frequency lock-in amplifier for spectroscopy and imaging applications. Meas. Sci. Technol. 2021, 32, 125501. [Google Scholar] [CrossRef]
- Akshaya, S.; Rao, S.N.; Bennaceur, K. A Survey of Low-cost Lock-in Amplifiers for Sensor Applications. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 2486–2490. [Google Scholar] [CrossRef]
- Uhl, D.; Bruder, L.; Stienkemeier, F. A flexible and scalable, fully software-based lock-in amplifier for nonlinear spectroscopy. Rev. Sci. Instrum. 2021, 92, 083101. [Google Scholar] [CrossRef]
- Alves, D.; Coelho, R.; Klein, A.; Panis, T.; Murari, A. A real-time synchronous detector for the TAE antenna diagnostic at JET. IEEE Trans. Nucl. Sci. 2010, 57, 577–582. [Google Scholar] [CrossRef]
- Dykman, L.A.; Khlebtsov, N.G. Methods for chemical synthesis of colloidal gold. Russ. Chem. Rev. 2019, 88, 229. [Google Scholar] [CrossRef]
- Dong, S.A.; Zhou, S.P. Photochemical synthesis of colloidal gold nanoparticles. Mater. Sci. Eng. B 2007, 140, 153–159. [Google Scholar] [CrossRef]
- Kluczynski, P.; Gustafsson, J.; Lindberg, Å.M.; Axner, O. Wavelength modulation absorption spectrometry—An extensive scrutiny of the generation of signals. Spectrochim. Acta Part B At. Spectrosc. 2001, 56, 1277–1354. [Google Scholar] [CrossRef]
- Park, Y.; Jin, S.; Noda, I.; Jung, Y.M. Recent progresses in two-dimensional correlation spectroscopy (2D-COS). J. Mol. Struct. 2018, 1168, 1–21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonsêca, H.; Rativa, D.; Lima, R. In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array. Sensors 2023, 23, 7195. https://doi.org/10.3390/s23167195
Fonsêca H, Rativa D, Lima R. In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array. Sensors. 2023; 23(16):7195. https://doi.org/10.3390/s23167195
Chicago/Turabian StyleFonsêca, Hugo, Diego Rativa, and Ricardo Lima. 2023. "In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array" Sensors 23, no. 16: 7195. https://doi.org/10.3390/s23167195
APA StyleFonsêca, H., Rativa, D., & Lima, R. (2023). In-Loco Optical Spectroscopy through a Multiple Digital Lock-In on a Linear Charge-Coupled Device (CCD) Array. Sensors, 23(16), 7195. https://doi.org/10.3390/s23167195