Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot
Abstract
:1. Introduction
2. Overview of Medical Imaging Technology
2.1. Definition of Medical Image Navigation Technology
2.2. Classification of Medical Image Navigation Technology
2.2.1. Single-Modal Medical Imaging
2.2.2. Multimodal Medical Imaging
2.3. Application of Medical Image Navigation
3. Overview of Minimally Invasive Puncture Robot
3.1. Definition of Minimally Invasive Puncture Robot
3.2. Advantages of the Minimally Invasive Puncture Robot
3.3. Research Progress of Minimally Invasive Puncture Robot
4. Current Status of Research on the Application of Medical Image Navigation Technology in Puncture Robots
4.1. Overview of Research on the Application of Medical Image Navigation Technology in Puncture Robots
4.2. Case Study of Medical Image Navigation Technology in a Puncture Robot
4.2.1. Ultrasound-Technology-Guided Robotic Puncture
4.2.2. CT-Guided Minimally Invasive Puncture Robotic Puncture
4.2.3. MRI-Guided Minimally Invasive Puncture Robotic Puncture
4.2.4. Multimodal Imaging Technology Guides Minimally Invasive Puncture Robot Puncture
4.3. Summary
5. Optimization Method of Medical Image Navigation Technology in Puncture Robot
5.1. Image Quality Optimization
5.2. Optimization of Puncture under Respiratory Motion
5.3. Algorithm Optimization
6. Conclusions and Outlook
6.1. Limitations of the Prior Art
- Image real time: Most medical imaging technologies (e.g., MRI or CT) do not usually provide real-time updated images, which can lead to robots operating based on slightly outdated data.
- Image resolution: Although existing medical imaging technologies are already quite high resolution, higher image resolution and contrast may be required for certain minimally invasive procedures, such as nerve or blood vessel punctures.
- Alignment of images to actual operations: Ensuring the accuracy of alignment between robotic operations and medical images can be challenging. Natural movements of the body (e.g., breathing or heartbeat) can lead to deviations between the actual tissue position and the image.
- Cost issues: High-quality medical imaging equipment and the robotics associated with it are expensive and may be beyond the reach of some healthcare facilities.
- Hardware and software compatibility issues: Medical imaging equipment and robotics from different manufacturers may have compatibility issues.
- Safety and accuracy concerns: Although medical image guidance provides enhanced navigation, there is still a risk of misdirection leading to the mispicking of instruments.
6.2. Summary of Research Results
6.3. Looking Ahead to Future Research Directions
- Real-time image acquisition and processing: In order to reduce image latency, research will focus on how to acquire and process medical images more quickly. With the help of advanced computing hardware and optimized algorithms, we can expect that in the near future, real-time or near-real-time high-quality medical images will be possible.
- High-resolution and high-quality imaging technology: With advances in medical imaging technology, higher-resolution and higher-quality images can be expected in the future. This will not only provide more detailed information about human tissues, but also help robots to operate more accurately.
- Application of deep learning in image processing: Deep learning has shown its powerful capabilities in many fields, including image recognition and processing. We can foresee that deep learning will play an increasingly important role in image processing, helping robots better understand image information and improve the accuracy and efficiency of operations.
- Image alignment and tracking: Techniques to improve the alignment of images with actual surgical scenes are another important area of research. This may involve new alignment algorithms and may require new sensors or devices. In addition, how to track changes in human tissues in real time and how to adjust the operation of the robot according to these changes will also be part of the research on image alignment and tracking.
- Multimodal image fusion: The use of different types of medical images can obtain more comprehensive information about the human body. How to effectively integrate this information so that the robot can understand the surgical environment more comprehensively and accurately will be an important research direction in the future.
- Individual path planning: Each patient’s body structure is unique. Using medical image navigation technology, the puncture path can be customized for each patient, achieving truly individualized treatment. For some complex areas or diseases, traditional hand piercing may require a high level of skill and experience. With medical image navigation technology, the robot can automatically plan the optimal path, making the operation easier.
Author Contributions
Funding
Conflicts of Interest
References
- Piperata, A.; Busuttil, O.; Jansens, J.-L.; Modine, T.; Pernot, M.; Labrousse, L. A Single Center Initial Experience with Robotic-Assisted Minimally Invasive Coronary Artery Bypass Surgery (RA-MIDCAB). J. Pers. Med. 2022, 12, 1895. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Kim, J.-M.; Park, S.-S. Current Status and Trends of Minimally Invasive Gastrectomy in Korea. Medicina 2021, 57, 1195. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.-J.; Kim, H.-J. Microneedles in Action: Microneedling and Microneedles-Assisted Transdermal Delivery. Polymers 2022, 14, 1608. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, T.; Op de Beeck, B.; Bracke, B.; Niekel, M.; Van Reeth, V.; Dankerlui, R.; Roeyen, G.; Hartman, V.; Snoeckx, A.; Spinhoven, M.; et al. Is Stereotactic Microwave Ablation of Resectable Colorectal Liver Metastasis an Alternative for Liver Resection in Covid19 Pandemic? HPB 2021, 23, S737–S738. [Google Scholar] [CrossRef]
- Lee, T.-L.; Wei, P.-Y.; Tai, S.-K. Effect of local anesthesia on pain scale and specimen adequacy in fine-needle aspiration biopsy of thyroid nodules for liquid-based cytology. Sci. Rep. 2022, 12, 18498. [Google Scholar] [CrossRef]
- Xiu, X.; Gao, G.; Liu, Y.; Ma, F. Drug delivery with dissolving microneedles: Skin puncture, its influencing factors and improvement strategies. J. Drug Deliv. Sci. Technol. 2022, 76, 103653. [Google Scholar] [CrossRef]
- Yélamos, O.; Andersen, D.; Pont, M.; Iglesias, P.; Potrony, M.; Domínguez, M.; Herrero, A.; Alejo, B.; Mateu, J.; Røpke, M.; et al. Development and validation of a minimally invasive and image-guided tape stripping method to sample atopic skin in children. Clin. Exp. Dermatol. 2023, 48, 80–88. [Google Scholar] [CrossRef]
- Kojcev, R.; Khakzar, A.; Fuerst, B.; Zettinig, O.; Fahkry, C.; DeJong, R.; Richmon, J.; Taylor, R.; Sinibaldi, E.; Navab, N. On the reproducibility of expert-operated and robotic ultrasound acquisitions. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 1003–1011. [Google Scholar] [CrossRef]
- Johnston, E.W.; Basso, J.; Winfield, J.; McCall, J.; Khan, N.; Messiou, C.; Koh, D.-M.; Fotiadis, N. Starting CT-guided robotic interventional oncology at a UK centre. Br. J. Radiol. 2022, 95, 20220217. [Google Scholar] [CrossRef]
- Balter, M.L.; Chen, A.I.; Maguire, T.J.; Yarmush, M.L. The System Design and Evaluation of a 7-DOF Image-Guided Venipuncture Robot. IEEE Trans. Robot. 2015, 31, 1044–1053. [Google Scholar] [CrossRef]
- Forward Looking Economist. The Market Status and Development Prospects of China’s Percutaneous Puncture Surgery Robot Industry in 2022 Are Predicted to Be about 264 Million US Dollars in 2026. Available online: https://baijiahao.baidu.com/s?id=1732686917804788052 (accessed on 5 August 2023).
- Duan, X.; Xie, D.; Zhang, R.; Li, X.; Sun, J.; Qian, C.; Song, X.; Li, C. A Novel Robotic Bronchoscope System for Navigation and Biopsy of Pulmonary Lesions. Cyborg Bionic Syst. 2023, 4, 13. [Google Scholar] [CrossRef]
- Du, C.; Li, J.; Zhang, B.; Feng, W.; Zhang, T.; Li, D. Intraoperative navigation system with a multi-modality fusion of 3D virtual model and laparoscopic real-time images in laparoscopic pancreatic surgery: A preclinical study. BMC Surg. 2022, 22, 139. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Jin, Z.; Zhang, C.; He, Z.; Zha, Z.; Hu, C.; Gan, T.; Yan, Q.; Wang, P.; Ye, X. The Future of Endoscopic Navigation: A Review of Advanced Endoscopic Vision Technology. IEEE Access 2021, 9, 41144–41167. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, W.; Zhang, W.; Paolo, D. A Novel Biopsy Capsule Robot Based on High-Speed Cutting Tissue. Cyborg Bionic Syst. 2022, 2022, 9783517. [Google Scholar] [CrossRef]
- Luo, T.; Li, Y. Research and Analysis of Brain Glioma Imaging Based on Deep Learning. J. Healthc. Eng. 2021, 2021, 3426080. [Google Scholar] [CrossRef] [PubMed]
- Gai, D.; Shen, X.; Cheng, H.; Chen, H. Medical Image Fusion via PCNN Based on Edge Preservation and Improved Sparse Representation in NSST Domain. IEEE Access 2019, 7, 85413–85429. [Google Scholar] [CrossRef]
- Fei, X.; Wang, J.; Ying, S.; Hu, Z.; Shi, J. Projective parameter transfer based sparse multiple empirical kernel learning Machine for diagnosis of brain disease. Neurocomputing 2020, 413, 271–283. [Google Scholar] [CrossRef]
- Griauzde, J.; Srinivasan, A. Advanced Neuroimaging Techniques: Basic Principles and Clinical Applications. J. Neuro-Ophthalmol. 2018, 38, 101–114. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Chen, Y.; Xie, Y.; He, M.; Zhu, Y.; Xu, L.; Han, Z.; Chen, D.; Jin, Q.; et al. Biogenic Gas Vesicles for Ultrasound Imaging and Targeted Therapeutics. Curr. Med. Chem. 2022, 29, 1316–1330. [Google Scholar] [CrossRef]
- Seidel, J.; Bissell, M.B.; Vatturi, S.; Hartery, A. Retrospective Analysis of Emergency Computed Tomography Imaging Utilization at an Academic Centre: An Analysis of Clinical Indications and Outcomes. Can. Assoc. Radiol. J. 2019, 70, 13–22. [Google Scholar] [CrossRef]
- Erem, G.; Ameda, F.; Otike, C.; Olwit, W.; Mubuuke, A.G.; Schandorf, C.; Kisolo, A.; Kawooya, M.G. Adult Computed Tomography examinations in Uganda: Towards determining the National Diagnostic Reference Levels. BMC Med. Imaging 2022, 22, 112. [Google Scholar] [CrossRef] [PubMed]
- Thanacharoenpanich, S.; Bixby, S.; Breen, M.A.; Kim, Y.-J. MRI Is Better Than CT Scan for Detection of Structural Pathologies After Traumatic Posterior Hip Dislocations in Children and Adolescents. J. Pediatr. Orthop. 2020, 40, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.P. Myxoid Liposarcoma: How to Stage and Follow. Curr. Treat. Options Oncol. 2023, 24, 292–299. [Google Scholar] [CrossRef]
- Azam, M.A.; Khan, K.B.; Salahuddin, S.; Rehman, E.; Khan, S.A.; Khan, M.A.; Kadry, S.; Gandomi, A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput. Biol. Med. 2022, 144, 105253. [Google Scholar] [CrossRef]
- Kong, W.; Li, C.; Lei, Y. Multimodal medical image fusion using convolutional neural network and extreme learning machine. Front. Neurorobot. 2022, 16, 1050981. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; Kaffas, A.E.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef]
- Meier, J.G.; Erasmus, J.J.; Gladish, G.W.; Peterson, C.B.; Diab, R.H.; Mawlawi, O.R. Characterization of continuous bed motion effects on patient breathing and respiratory motion correction in PET/CT imaging. J. Appl. Clin. Med. Phys. 2020, 21, 158–165. [Google Scholar] [CrossRef]
- Rodríguez-Romero, R.; Castro-Tejero, P. The influence of respiratory motion on CT image volume definition. Med. Phys. 2014, 41, 041701. [Google Scholar] [CrossRef]
- Ruan, W.; Liu, F.; Sun, X.; Hu, F.; Wu, T.; Zhang, Y.; Lan, X. Evaluating two respiratory correction methods for abdominal PET/MRI imaging. EJNMMI Phys. 2022, 9, 5. [Google Scholar] [CrossRef]
- Talon, E.; Wimmer, W.; Hakim, A.; Kiefer, C.; Pastore-Wapp, M.; Anschuetz, L.; Mantokoudis, G.; Caversaccio, M.D.; Wagner, F. Influence of head orientation and implantation site of a novel transcutaneous bone conduction implant on MRI metal artifact reduction sequence. Eur. Arch. Oto-Rhino-Laryngol. 2022, 279, 4793–4799. [Google Scholar] [CrossRef]
- Gradinaru, L.M.; Barbalata Mandru, M.; Drobota, M.; Aflori, M.; Butnaru, M.; Spiridon, M.; Doroftei, F.; Aradoaei, M.; Ciobanu, R.C.; Vlad, S. Composite Materials Based on Iron Oxide Nanoparticles and Polyurethane for Improving the Quality of MRI. Polymers 2021, 13, 4316. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, S.; Liu, J.; Liu, Y.; Zhang, X. Fusion of medical images based on salient features extraction by PSO optimized fuzzy logic in NSST domain. Biomed. Signal Process. Control 2021, 69, 102852. [Google Scholar] [CrossRef]
- Huang, Y.; Li, W.; Du, J. Anatomical-functional image fusion based on deep convolution neural networks in local Laplacian pyramid domain. Int. J. Imaging Syst. Technol. 2021, 31, 1246–1264. [Google Scholar] [CrossRef]
- Henzlova, M.J.; Bhambhvani, P.; Hage, F.G. Hybrid imaging in cardiovascular medicine; edited by Drs. Yi-Hwa Liu and Albert J. Sinusas. J. Nucl. Cardiol. 2018, 25, 1436–1437. [Google Scholar] [CrossRef]
- Ren, J.; Eriksen, J.G.; Nijkamp, J.; Korreman, S.S. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol. 2021, 60, 1399–1406. [Google Scholar] [CrossRef]
- Chalian, H.; O’Donnell, J.K.; Bolen, M.; Rajiah, P. Incremental value of PET and MRI in the evaluation of cardiovascular abnormalities. Insights Imaging 2016, 7, 485–503. [Google Scholar] [CrossRef]
- Perone, F.; Guglielmo, M.; Coceani, M.; La Mura, L.; Dentamaro, I.; Sabatino, J.; Gimelli, A. The Role of Multimodality Imaging Approach in Acute Aortic Syndromes: Diagnosis, Complications, and Clinical Management. Diagnostics 2023, 13, 650. [Google Scholar] [CrossRef]
- Kanthan, G.L.; Coyle, L.; Kneebone, A.; Schembri, G.P.; Hsiao, E. Follicular Lymphoma Showing Avid Uptake on 68Ga PSMA-HBED-CC PET/CT. Clin. Nucl. Med. 2016, 41, 500–501. [Google Scholar] [CrossRef]
- Qi, Z.; Gates, E.L.; O’Brien, M.M.; Trout, A.T. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma. Pediatr. Radiol. 2018, 48, 196–203. [Google Scholar] [CrossRef]
- Samim, M.; Molenaar, I.Q.; Seesing, M.F.J.; van Rossum, P.S.N.; van den Bosch, M.A.A.J.; Ruers, T.J.M.; Borel Rinkes, I.H.M.; van Hillegersberg, R.; Lam, M.G.E.H.; Verkooijen, H.M. The diagnostic performance of 18F-FDG PET/CT, CT and MRI in the treatment evaluation of ablation therapy for colorectal liver metastases: A systematic review and meta-analysis. Surg. Oncol. 2017, 26, 37–45. [Google Scholar] [CrossRef]
- Arabahmadi, M.; Farahbakhsh, R.; Rezazadeh, J. Deep Learning for Smart Healthcare—A Survey on Brain Tumor Detection from Medical Imaging. Sensors 2022, 22, 1960. [Google Scholar]
- Patel, V.V.; Andersson, G.B.J.; Garfin, S.R.; Resnick, D.L.; Block, J.E. Utilization of CT scanning associated with complex spine surgery. BMC Musculoskelet. Disord. 2017, 18, 52. [Google Scholar] [CrossRef]
- Matsumura, A.; Namikawa, T.; Kato, M.; Ozaki, T.; Hori, Y.; Hidaka, N.; Nakamura, H. Posterior corrective surgery with a multilevel transforaminal lumbar interbody fusion and a rod rotation maneuver for patients with degenerative lumbar kyphoscoliosis. J. Neurosurg. Spine SPI 2017, 26, 150–157. [Google Scholar] [CrossRef]
- Van den Wyngaert, T.; Paycha, F.; Strobel, K.; Kampen, W.U.; Kuwert, T.; van der Bruggen, W.; Gnanasegaran, G. SPECT/CT in Postoperative Painful Hip Arthroplasty. Semin. Nucl. Med. 2018, 48, 425–438. [Google Scholar] [CrossRef]
- Kim, S.-H.; Mun, S.-J.; Kim, H.-J.; Kim, S.L.; Kim, S.-D.; Cho, K.-S. Differential Diagnosis of Sinonasal Lymphoma and Squamous Cell Carcinoma on CT, MRI, and PET/CT. Otolaryngol. Head Neck Surg. 2018, 159, 494–500. [Google Scholar] [CrossRef]
- Chandarana, H.; Wang, H.; Tijssen, R.H.N.; Das, I.J. Emerging role of MRI in radiation therapy. J. Magn. Reson. Imaging 2018, 48, 1468–1478. [Google Scholar] [CrossRef]
- Alfonso, F.; Prati, F. Optical coherence tomography or intravascular ultrasound to optimize coronary stent implantation. Eur. Heart J. 2017, 38, 3148–3151. [Google Scholar] [CrossRef]
- Hahn, R.T.; Nicoara, A.; Kapadia, S.; Svensson, L.; Martin, R. Echocardiographic Imaging for Transcatheter Aortic Valve Replacement. J. Am. Soc. Echocardiogr. 2018, 31, 405–433. [Google Scholar] [CrossRef]
- Wiesner, E.L.; Hillen, T.J.; Long, J.; Jennings, J.W. Percutaneous CT-Guided Biopsies of the Cervical Spine: Technique, Histopathologic and Microbiologic Yield, and Safety at a Single Academic Institution. Am. J. Neuroradiol. 2018, 39, 981. [Google Scholar] [CrossRef]
- Yoon, M.A.; Chung, H.W.; Chee, C.G.; Lee, M.H.; Lee, S.H.; Shin, M.J. Risk Factors for Diagnostic Failure of Ultrasound-Guided Core Needle Biopsy of Soft-Tissue Tumors Based on World Health Organization Classification Category and Biologic Potential. Am. J. Roentgenol. 2019, 214, 413–421. [Google Scholar] [CrossRef]
- Pires, F.; Costa, C.; Dias, P. On the Use of Virtual Reality for Medical Imaging Visualization. J. Digit. Imaging 2021, 34, 1034–1048. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Z.; Qi, X.; Hu, Y.; Li, B.; Zhang, J. Robot-Assisted Decompressive Laminectomy Planning Based on 3D Medical Image. IEEE Access 2018, 6, 22557–22569. [Google Scholar] [CrossRef]
- Shi, H.; Liang, Z.; Zhang, B.; Wang, H. Design and Performance Verification of a Novel RCM Mechanism for a Minimally Invasive Surgical Robot. Sensors 2023, 23, 2361. [Google Scholar] [CrossRef]
- Vaishnav, A.S.; Othman, Y.A.; Virk, S.S.; Gang, C.H.; Qureshi, S.A. Current state of minimally invasive spine surgery. J. SpineSurg. 2019, 5 (Suppl. 1), S2. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, X.; Gao, Y.; Wu, D.; Dong, W. Design and Kinematics Analysis of a Percutaneous Needle Insertion Robotic System. IOP Conf. Ser. Mater. Sci. Eng. 2020, 825, 012009. [Google Scholar] [CrossRef]
- Guiu, B.; De Baère, T.; Noel, G.; Ronot, M. Feasibility, safety and accuracy of a CT-guided robotic assistance for percutaneous needle placement in a swine liver model. Sci. Rep. 2021, 11, 5218. [Google Scholar] [CrossRef]
- Balter, M.L.; Chen, A.I.; Maguire, T.J.; Yarmush, M.L. Adaptive Kinematic Control of a Robotic Venipuncture Device Based on Stereo Vision, Ultrasound, and Force Guidance. IEEE Trans. Ind. Electron. 2017, 64, 1626–1635. [Google Scholar] [CrossRef]
- Berthet-Rayne, P.; Gras, G.; Leibrandt, K.; Wisanuvej, P.; Schmitz, A.; Seneci, C.A.; Yang, G.-Z. The i2Snake Robotic Platform for Endoscopic Surgery. Ann. Biomed. Eng. 2018, 46, 1663–1675. [Google Scholar] [CrossRef]
- Kim, J.; de Mathelin, M.; Ikuta, K.; Kwon, D.S. Advancement of Flexible Robot Technologies for Endoluminal Surgeries. Proc. IEEE 2022, 110, 909–931. [Google Scholar] [CrossRef]
- Wu, X.-b.; Wang, J.-q.; Sun, X.; Han, W. Guidance for the Treatment of Femoral Neck Fracture with Precise Minimally Invasive Internal Fixation Based on the Orthopaedic Surgery Robot Positioning System. Orthop. Surg. 2019, 11, 335–340. [Google Scholar] [CrossRef]
- de Baere, T.; Roux, C.; Noel, G.; Delpla, A.; Deschamps, F.; Varin, E.; Tselikas, L. Robotic assistance for percutaneous needle insertion in the kidney: Preclinical proof on a swine animal model. Eur. Radiol. Exp. 2022, 6, 13. [Google Scholar] [CrossRef]
- Rubino, F.; Eichberg, D.G.; Cordeiro, J.G.; Di, L.; Eliahu, K.; Shah, A.H.; Luther, E.M.; Lu, V.M.; Komotar, R.J.; Ivan, M.E. Robotic guidance platform for laser interstitial thermal ablation and stereotactic needle biopsies: A single center experience. J. Robot. Surg. 2022, 16, 549–557. [Google Scholar] [CrossRef]
- Zhang, W.; Bao, K.; Zheng, L.; Cai, L.; Yan, B.; Yang, R. A robotic puncture system with optical and mechanical feedback under respiratory motion. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2403. [Google Scholar] [CrossRef] [PubMed]
- Leal Ghezzi, T.; Campos Corleta, O. 30 Years of Robotic Surgery. World J. Surg. 2016, 40, 2550–2557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, X.; Niu, B.; Yan, Y.; Shao, F.; Fan, Y.; Wang, Y. Intraoperative localization of small pulmonary nodules to assist surgical resection: A novel approach using a surgical navigation puncture robot system. Thorac. Cancer 2020, 11, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Siegfarth, M.; Lutz, R.; Iseke, N.-C.; Moviglia, J.; Sadi, F.; Stallkamp, J. A semi-automated robotic system for percutaneous interventions. Int. J. Comput. Assist. Radiol. Surg. 2023, 1–5. [Google Scholar] [CrossRef]
- Taguchi, K.; Hamamoto, S.; Kato, T.; Iwatsuki, S.; Etani, T.; Okada, A.; Yasui, T. Robot-assisted fluoroscopy-guided renal puncture for endoscopic combined intrarenal surgery: A pilot single-centre clinical trial. BJU Int. 2021, 127, 307–310. [Google Scholar] [CrossRef]
- Taguchi, K.; Hamamoto, S.; Okada, A.; Tanaka, Y.; Sugino, T.; Unno, R.; Kato, T.; Ando, R.; Tan, Y.-K.; Yasui, T. Robot-Assisted Fluoroscopy Versus Ultrasound-Guided Renal Access for Nephrolithotomy: A Phantom Model Benchtop Study. J. Endourol. 2019, 33, 987–994. [Google Scholar] [CrossRef]
- Hiraki, T.; Kamegawa, T.; Matsuno, T.; Komaki, T.; Sakurai, J.; Kanazawa, S. Zerobot®: A remote-controlled robot for needle insertion in CT-guided interventional radiology developed at Okayama University. Acta Medica Okayama 2018, 72, 539–546. [Google Scholar]
- Hou, J.; Yang, R.; Lin, Q.; Zhang, Z.; Xie, Y.; Huang, M. Automatic robotic puncture system for accurate liver cancer ablation based on optical surgical navigation. Zhongguo Yi Liao Qi Xie Za Zhi Chin. J. Med. Instrum. 2018, 42, 27–30. [Google Scholar]
- Yang, Y.; Jiang, S.; Yang, Z.; Yuan, W.; Dou, H.; Wang, W.; Zhang, D.; Bian, Y. Design and analysis of a tendon-based computed tomography–compatible robot with remote center of motion for lung biopsy. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2017, 231, 286–298. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, Q.; Jin, D.; Chiu, P.W.Y.; Pang, C.P.; Chong, K.K.L.; Zhang, L. Real-Time Navigation of an Untethered Miniature Robot Using Mobile Ultrasound Imaging and Magnetic Actuation Systems. IEEE Robot. Autom. Lett. 2022, 7, 7668–7675. [Google Scholar] [CrossRef]
- Freyaldenhoven, S.T.; Tsukada, H. Robotics in the diagnosis and staging of lung cancer. J. Surg. Oncol. 2023, 127, 258–261. [Google Scholar] [CrossRef]
- Song, S.; Zhang, C.; Liu, L.; Meng, M.Q.H. Preliminary study on magnetic tracking-based planar shape sensing and navigation for flexible surgical robots in transoral surgery: Methods and phantom experiments. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 241–251. [Google Scholar] [CrossRef]
- Chen, X.; Yan, Y.; Li, A.; Wang, T.; Wang, Y. Robot-Assisted Needle Insertion for CT-Guided Puncture: Experimental Study with a Phantom and Animals. CardioVascular Interv. Radiol. 2023, 46, 128–135. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, Z.; Wang, H.; Deng, J.; Li, P.; Jia, Y.; Dong, Y.; Sha, H.; Yan, F.; Tu, W. Study on automatic ultrasound scanning of lumbar spine and visualization system for path planning in lumbar puncture surgery. Math. Biosci. Eng. 2023, 20, 613–623. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, S.; Xu, W.; Zhu, X.; Cao, Q. Robotic system for accurate percutaneous puncture guided by 3D–2D ultrasound. Int. J. Comput. Assist. Radiol. Surg. 2023, 18, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, F.; Lin, Y.; Shi, Q.; Wang, Y. Ultrasound-guided needle insertion robotic system for percutaneous puncture. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 475–484. [Google Scholar] [CrossRef]
- Zhang, W.; Xia, P.; Liu, S.; Huang, X.; Zhao, X.; Liu, Z.; Dang, H.; Li, X.; Niu, G. A coordinate positioning puncture method under robot-assisted CT-guidance: Phantom and animal experiments. Minim. Invasive Ther. Allied Technol. 2022, 31, 206–215. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Y.; Wang, J.; Zeng, C.; Huang, J.; Liu, C. The Design of Compact Robotic-Assisted Needle Position System with MPC-Based Remote Control. Complexity 2020, 2020, 5406084. [Google Scholar] [CrossRef]
- Groetz, S.; Wilhelm, K.; Willinek, W.; Pieper, C.; Schild, H.; Thomas, D. A new robotic assistance system for percutaneous CT-guided punctures: Initial experience. Minim. Invasive Ther. Allied Technol. 2016, 25, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Altahawi, F.; Owens, A.; Caruso, C.H.; Wetzel, J.R.; Strnad, G.J.; Chiunda, A.B.; Spindler, K.P.; Subhas, N. Development and Operationalization of an Automated Workflow for Correlation of Knee MRI and Arthroscopy Findings. J. Am. Coll. Radiol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Jaroslaw, D.; Erik, H.M.; Zbigniew, K.W. Novel Application of 7T MRI in CSF1R-related leukoencephalopathy. Neurology 2022, 99, 1110. [Google Scholar]
- Spinnato, P.; D’Agostino, V.; Fiorenzo, D.; Barakat, M.; Vara, G.; Ponti, F.; Filonzi, G.; Crombé, A.; Tetta, C.; Miceli, M. Underreporting of spinal epidural lipomatosis: A retrospective analysis of lumbosacral MRI examinations from different radiological settings. Diagn. Interv. Imaging 2022, 103, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Liu, K.; Yang, W.; Li, Y.; Wang, X.; Zhang, T.; Liu, C.; Li, Y.; Mi, Y. MRI manifestations of central nervous system leukaemia and cytological analysis of the cerebrospinal fluid. Clin. Radiol. 2023, 78, e613–e619. [Google Scholar] [CrossRef]
- Fischer, G.S.; Iordachita, I.; Csoma, C.; Tokuda, J.; DiMaio, S.P.; Tempany, C.M.; Hata, N.; Fichtinger, G. MRI-Compatible Pneumatic Robot for Transperineal Prostate Needle Placement. IEEE/ASME Trans. Mechatron. 2008, 13, 295–305. [Google Scholar] [CrossRef]
- Krieger, A.; Song, S.E.; Cho, N.B.; Iordachita, I.I.; Guion, P.; Fichtinger, G.; Whitcomb, L.L. Development and Evaluation of an Actuated MRI-Compatible Robotic System for MRI-Guided Prostate Intervention. IEEE/ASME Trans. Mechatron. 2013, 18, 273–284. [Google Scholar] [CrossRef]
- Franco, E.; Brujic, D.; Rea, M.; Gedroyc, W.M.; Ristic, M. Needle-Guiding Robot for Laser Ablation of Liver Tumors Under MRI Guidance. IEEE/ASME Trans. Mechatron. 2016, 21, 931–944. [Google Scholar] [CrossRef]
- Lim, S.; Sharma, K.; Li, P.; Petrisor, D.; Fricke, S.; Stoianovici, D.; Cleary, K. Robotically assisted long bone biopsy under MRI: Cadaver study results. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 147–156. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.-h. A Visual Servo Controlled Robotic System for MRI-guided Breast Biopsy. J. Intell. Robot. Syst. 2022, 105, 86. [Google Scholar] [CrossRef]
- Shahriari, N.; Heerink, W.; van Katwijk, T.; Hekman, E.; Oudkerk, M.; Misra, S. Computed tomography (CT)-compatible remote center of motion needle steering robot: Fusing CT images and electromagnetic sensor data. Med. Eng. Phys. 2017, 45, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Luo, M.; Bai, K. Optical positioning technology of an assisted puncture robot based on binocular vision. Int. J. Imaging Syst. Technol. 2019, 29, 180–190. [Google Scholar] [CrossRef]
- He, T.; Guo, C.; Liu, H.; Jiang, L. A venipuncture robot with decoupled position and attitude guided by near-infrared vision and force feedback. Int. J. Med. Robot. Comput. Assist. Surg. 2023, 19, e2512. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, Y.; Qiu, Q.; Huang, J.; Liu, C.; Cao, Z.; Chen, Y. A Novel Robotic Guidance System With Eye-Gaze Tracking Control for Needle-Based Interventions. IEEE Trans. Cogn. Dev. Syst. 2021, 13, 179–188. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Li, P.; Jiang, L. Application of high-resolution CT images information in complicated infection of lung tumors. J. Infect. Public Health 2021, 14, 418–422. [Google Scholar] [CrossRef]
- Jiang, W.; Ong, F.; Johnson, K.M.; Nagle, S.K.; Hope, T.A.; Lustig, M.; Larson, P.E.Z. Motion robust high resolution 3D free-breathing pulmonary MRI using dynamic 3D image self-navigator. Magn. Reson. Med. 2018, 79, 2954–2967. [Google Scholar] [CrossRef]
- Wu, Y.; Xie, F.; Huang, L.; Sun, R.; Yang, J.; Yu, Q. Convolutionally evaluated gradient first search path planning algorithm without prior global maps. Robot. Auton. Syst. 2022, 150, 103985. [Google Scholar] [CrossRef]
- Lee, A.Y.M.; Chen, K.; Law, Y.M.; Ho, H.S.S.; Cheng, C.W.S.; Yuen, J.S.P.; Tay, K.J. Robot-assisted Magnetic Resonance Imaging-ultrasound Fusion Transperineal Targeted Biopsy. Urology 2021, 155, 46. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, L.; Cai, L.; Zhang, W.; Yang, L.; Yang, R. An Uncalibrated and Accurate Robotic Puncture Method Under Respiratory Motion. IEEE Sens. J. 2022, 22, 17266–17274. [Google Scholar] [CrossRef]
- Zhou, Y.; Thiruvalluvan, K.; Krzeminski, L.; Moore, W.H.; Xu, Z.; Liang, Z. CT-guided robotic needle biopsy of lung nodules with respiratory motion—Experimental system and preliminary test. Int. J. Med. Robot. Comput. Assist. Surg. 2013, 9, 317–330. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Yang, Z.; Zhang, G.; Ma, L. A CT-guided robotic needle puncture method for lung tumours with respiratory motion. Phys. Med. Eur. J. Med. Phys. 2020, 73, 48–56. [Google Scholar] [CrossRef]
- Appiahene, P.; Asare, J.W.; Donkoh, E.T.; Dimauro, G.; Maglietta, R. Detection of iron deficiency anemia by medical images: A comparative study of machine learning algorithms. BioData Min. 2023, 16, 2. [Google Scholar] [CrossRef]
- Chen, J.; Xie, F.; Huang, L.; Yang, J.; Liu, X.; Shi, J. A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes. Remote Sens. 2022, 14, 2114. [Google Scholar] [CrossRef]
- Zhou, H.; Zhuang, Z.; Liu, Y.; Liu, Y.; Zhang, X. Defect Classification of Green Plums Based on Deep Learning. Sensors 2020, 20, 6993. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Luo, M.; Bai, K.; Chen, S. A Precise Positioning Method for a Puncture Robot Based on a PSO-Optimized BP Neural Network Algorithm. Appl. Sci. 2017, 7, 969. [Google Scholar] [CrossRef]
- Wang, L.; Hu, T. The design of a dual channel synchronous control system based on a new percutaneous puncture surgical robot. Multimed. Tools Appl. 2020, 79, 10405–10425. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Zhang, X.; Zhou, Z.; Jiang, W.; Chen, L.; Liu, Z.; Wu, D.; Dong, W. A Dual-Armed Robotic Puncture System: Design, Implementation and Preliminary Tests. Electronics 2022, 11, 740. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Zhang, X.; Liu, G.; Zhao, J.I.E. Space calibration of the robot system in puncture surgery. J. Mech. Med. Biol. 2021, 21, 2140070. [Google Scholar] [CrossRef]
- Zhang, L.; Li, C.; Fan, Y.; Zhang, X.; Zhao, J. Physician-Friendly Tool Center Point Calibration Method for Robot-Assisted Puncture Surgery. Sensors 2021, 21, 366. [Google Scholar] [CrossRef]
Applications | Example | Role and Advantages |
---|---|---|
Neurosurgery | Brain tumour removal, intracranial compression fracture repair, spinal surgery, etc. | Improved positioning accuracy for safer and more effective surgery [42,43] |
Orthopedics | Joint replacement, fracture repositioning, spinal correction, etc. | Provides real-time 3D positioning information to reduce the risk of complications [44,45] |
Otolaryngology | Sinus surgery, skull base surgery | Avoid damage to vital structures and improve the success rate of the procedure [46] |
Oncology Treatment | Tumour resection surgery, radiation therapy | Accurately locate the tumour boundary, protect normal tissues, and improve surgical results and radiotherapy precision [47] |
Cardiovascular Surgery | Coronary artery stenting, aortic valve replacement, etc. | Real-time display of blood vessel and organ locations for improved surgical safety and results [48,49] |
Biological tissue biopsy | Biological tissue biopsy | Accurate localization of lesions, improved biopsy accuracy, and reduced risk of complication [50,51] |
Advantage | Disadvantage |
High accuracy | High cost |
Stable operation | High technical threshold |
Easy training | Human–computer interaction problem |
Strong replicability | |
Chance | Menace |
Personalized medicine solution | Regulatory restriction |
Promote the development of high and new technologies | Technical failure risk |
Interdisciplinary cooperation | Social acceptance |
Global market expansion | Data security and privacy issues |
Author | System Features | Operation Mode | Research Progress | Disadvantages |
---|---|---|---|---|
Fischer [87] | The system can position the needle for treatment by ejecting radioactive seeds or for diagnosis by collecting a tissue sample inside the magnet hole. | Semi-automatic | The overall accuracy of needle tip positioning was better than 0.25 mm and 0.5° relative to MR images. | The robot has limited space for operation, and the imaging effect will be affected when the motor is running. |
Krieger [88] | Manipulator equipped with active reference tracking to encode the position of the needle path. | Automatic | Used in animal and clinical experiments | Lack of research on the effects of respiratory movements |
Franco [89] | The robot is designed to operate inside a closed-hole MRI scanner | Semi-automatic | Save up to 30 min compared to manual MRI-guided laser ablation of liver tumours. | Lack of research on the effects of respiratory movements |
Lim [90] | MRI safety robot made entirely of non-metallic parts with pneumatic actuators and optical encoders | Semi-automatic | The robot had no significant effect on the image quality of the MRI, with an average accuracy of 1.43 mm during puncture targeting. | Longer puncture time |
Zhang [91] | Robot uses a control method that combines series–parallel robot forward kinematics with visual servo control. | Automatic | Repeat accuracy results showed that the average error for different lesions was 1.29~2.42 mm. | MRI image quality can be affected by the actuator |
Type | Advantage | Disadvantage |
---|---|---|
US | Good real-time performance, no radiation, easy to move | The penetration ability is poor, and the overall imaging effect is not as good as CT and MRI |
CT | Good imaging effect | The equipment is large in size, radiation when used, imaging time is long, easy to be affected by respiratory movement, and the use cost is high |
MRI | Good imaging effect, no radiation | The equipment is large, the imaging time is long, and it is easily affected by respiratory movement and metal particles, and the use cost is high |
Multimodal image | Integrated a variety of imaging technology, imaging quality is high. | The technology is complex and there are compatibility problems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, S.; Lu, R.; Zhu, Y.; Zhu, W.; Jiang, H.; Bi, S. Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot. Sensors 2023, 23, 7196. https://doi.org/10.3390/s23167196
Hu S, Lu R, Zhu Y, Zhu W, Jiang H, Bi S. Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot. Sensors. 2023; 23(16):7196. https://doi.org/10.3390/s23167196
Chicago/Turabian StyleHu, Shuai, Rongjian Lu, Yinlong Zhu, Wenhan Zhu, Hongzhe Jiang, and Suzhao Bi. 2023. "Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot" Sensors 23, no. 16: 7196. https://doi.org/10.3390/s23167196
APA StyleHu, S., Lu, R., Zhu, Y., Zhu, W., Jiang, H., & Bi, S. (2023). Application of Medical Image Navigation Technology in Minimally Invasive Puncture Robot. Sensors, 23(16), 7196. https://doi.org/10.3390/s23167196