Multimodal Approach for Pilot Mental State Detection Based on EEG
Abstract
:1. Introduction
- Development of automatic preprocessing pipeline to automatically repair or remove corrupted EEG data.
- Development of feature extraction and selection methodology, based on Riemannian geometry analysis of the cleaned EEG data, that handles the issues of an imbalanced dataset and the curse of dimensionality and extracts meaningful features from the EEG signals.
- Development of a novel APPD system based hybrid ensemble learning for classifying CA, DA, SS, and NE states.
2. Related Work
2.1. Signals Preprocessing
2.2. Feature Extraction
2.3. Mental State Classification
3. Materials and Methods
3.1. Dataset Description
3.2. The Automatic Preprocessing Pipeline
3.3. EEG Feature Extraction
3.4. EEG Classification
3.5. Performance Metrics
4. Results and Discussion
4.1. EEG Signal Analysis
4.2. Evaluation of Machine Learning Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Advanced Brain Monitoring X24 EEG Headset
Appendix A.2. Flight Simulator
References
- Kelly, D.; Efthymiou, M. An Analysis of Human Factors in Fifty Controlled Flight into Terrain Aviation Accidents from 2007 to 2017. J. Saf. Res. 2019, 69, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Yen, J.R.; Hsu, C.C.; Yang, H.; Ho, H. An Investigation of Fatigue Issues on Different Flight Operations. J. Air Transp. Manag. 2009, 15, 236–240. [Google Scholar] [CrossRef]
- Hankins, T.C.; Wilson, G.F. A Comparison of Heart Rate, Eye Activity, EEG and Subjective Measures of Pilot Mental Workload during Flight. Aviat. Space Environ. Med. 1998, 69, 360–367. [Google Scholar] [PubMed]
- Boksem, M.A.S.; Tops, M. Mental Fatigue: Costs and Benefits. Brain Res. Rev. 2008, 59, 125–139. [Google Scholar] [CrossRef]
- International Air Transport Association. 2021 Safety Report Edition; International Air Transport Association: Montreal, QC, Canada, 2022. [Google Scholar]
- International Air Transport Association. Loss of Control In-Flight Accident Analysis Report 2019 Edition; International Air Transport Association: Montreal, QC, Canada, 2019; ISBN 9789292640026. [Google Scholar]
- Commercial Aviation Safety Team SE211: Airplane State Awareness—Training for Attention Management. Available online: http://www.skybrary.aero/index.php/SE211:_Airplane_State_Awareness_-_Training_for_Attention_Management_(R-D) (accessed on 25 December 2022).
- Hogervorst, M.A.; Brouwer, A.M.; van Erp, J.B.F. Combining and Comparing EEG, Peripheral Physiology and Eye-Related Measures for the Assessment of Mental Workload. Front. Neurosci. 2014, 8, 322. [Google Scholar] [CrossRef]
- Liu, Y.; Ayaz, H.; Shewokis, P.A. Multisubject “Learning” for Mental Workload Classification Using Concurrent EEG, FNIRS, and Physiological Measures. Front. Hum. Neurosci. 2017, 11, 389. [Google Scholar] [CrossRef]
- Bigdely-Shamlo, N.; Mullen, T.; Kothe, C.; Su, K.M.; Robbins, K.A. The PREP Pipeline: Standardized Preprocessing for Large-Scale EEG Analysis. Front. Neuroinform. 2015, 9, 16. [Google Scholar] [CrossRef]
- Fló, A.; Gennari, G.; Benjamin, L.; Dehaene-Lambertz, G. Automated Pipeline for Infants Continuous EEG (APICE): A Flexible Pipeline for Developmental Cognitive Studies. Dev. Cogn. Neurosci. 2022, 54, 101077. [Google Scholar] [CrossRef]
- Kordylewski, H.; Graupe, D.; Liu, K. A Novel Large-Memory Neural Network as an Aid in Medical Diagnosis Applications. IEEE Trans. Inf. Technol. Biomed. 2001, 5, 202–209. [Google Scholar] [CrossRef]
- Güler, I.; Übeyli, E.D. Adaptive Neuro-Fuzzy Inference System for Classification of EEG Signals Using Wavelet Coefficients. J. Neurosci. Methods 2005, 148, 113–121. [Google Scholar] [CrossRef]
- Übeyli, E.D. Wavelet/Mixture of Experts Network Structure for EEG Signals Classification. Expert. Syst. Appl. 2008, 34, 1954–1962. [Google Scholar] [CrossRef]
- Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef] [PubMed]
- Roza, V.C.C.; Postolache, O.A. Multimodal Approach for Emotion Recognition Based on Simulated Flight Experiments. Sensors 2019, 19, 5516. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of Artifacts from EEG Signals: A Review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, M.D.; Kraft, A.; Krein, M.; Lo, L.C.; Hatfield, B.; Casebeer, W.; Russell, B. Sensing and Assessing Cognitive Workload across Multiple Tasks. In Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2016; Volume 9743, pp. 440–450. [Google Scholar]
- Jiao, Z.; Gao, X.; Wang, Y.; Li, J.; Xu, H. Deep Convolutional Neural Networks for Mental Load Classification Based on EEG Data. Pattern Recognit. 2018, 76, 582–595. [Google Scholar] [CrossRef]
- Terwilliger, P.; Sarle, J.; Walker, S.; Terwilliger, P.; Sarle, J.; Walker, S. A ResNet Autoencoder Approach for Time Series Classification of Cognitive State A ResNet Autoencoder Approach for Time Series Classification of Cognitive State. MODSIM World 2020, 1–11. [Google Scholar]
- Jaquess, K.J.; Gentili, R.J.; Lo, L.C.; Oh, H.; Zhang, J.; Rietschel, J.C.; Miller, M.W.; Tan, Y.Y.; Hatfield, B.D. Empirical Evidence for the Relationship between Cognitive Workload and Attentional Reserve. Int. J. Psychophysiol. 2017, 121, 46–55. [Google Scholar] [CrossRef]
- Nittala, S.K.R.; Elkin, C.P.; Kiker, J.M.; Meyer, R.; Curro, J.; Reiter, A.K.; Xu, K.S.; Devabhaktuni, V.K. Pilot Skill Level and Workload Prediction for Sliding-Scale Autonomy. In Proceedings of the 17th IEEE International Conference on Machine Learning and Applications, ICMLA 2018, Orlando, FL, USA, 17–20 December 2019; pp. 1166–1173. [Google Scholar] [CrossRef]
- Johnson, M.K.; Blanco, J.A.; Gentili, R.J.; Jaquess, K.J.; Oh, H.; Hatfield, B.D. Probe-Independent EEG Assessment of Mental Workload in Pilots. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, NER, Montpellier, France, 22–24 April 2015; Volume 2015, pp. 581–584. [Google Scholar]
- Zhang, P.; Wang, X.; Chen, J.; You, W. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload. Sensors 2017, 17, 2315. [Google Scholar] [CrossRef]
- Han, S.Y.; Kwak, N.S.; Oh, T.; Lee, S.W. Classification of Pilots’ Mental States Using a Multimodal Deep Learning Network. Biocybern. Biomed. Eng. 2020, 40, 324–336. [Google Scholar] [CrossRef]
- Binias, B.; Myszor, D.; Cyran, K.A. A Machine Learning Approach to the Detection of Pilot’s Reaction to Unexpected Events Based on EEG Signals. Comput. Intell. Neurosci. 2018, 2018, 2703513. [Google Scholar] [CrossRef]
- Oh, H.; Hatfield, B.D.; Jaquess, K.J.; Lo, L.C.; Tan, Y.Y.; Prevost, M.C.; Mohler, J.M.; Postlethwaite, H.; Rietschel, J.C.; Miller, M.W.; et al. A Composite Cognitive Workload Assessment System in Pilots under Various Task Demands Using Ensemble Learning. In Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience; Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9183, pp. 91–100. [Google Scholar]
- Wu, E.Q.; Peng, X.Y.; Zhang, C.Z.; Lin, J.X.; Sheng, R.S.F. Pilots’ Fatigue Status Recognition Using Deep Contractive Autoencoder Network. IEEE Trans. Instrum. Meas. 2019, 68, 3907–3919. [Google Scholar] [CrossRef]
- Alreshidi, I.M.; Moulitsas, I.; Jenkins, K.W. Miscellaneous EEG Preprocessing and Machine Learning for Pilots’ Mental States Classification: Implications; Association for Computing Machinery: New York, NY, USA, 2022; ISBN 9781450396943. [Google Scholar]
- Jas, M.; Engemann, D.A.; Bekhti, Y.; Raimondo, F.; Gramfort, A. Autoreject: Automated Artifact Rejection for MEG and EEG Data. Neuroimage 2017, 159, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Bonassi, A.; Ghilardi, T.; Gabrieli, G.; Truzzi, A.; Doi, H.; Borelli, J.L.; Lepri, B.; Shinohara, K.; Esposito, G. The Recognition of Cross-Cultural Emotional Faces Is Affected by Intensity and Ethnicity in a Japanese Sample. Behav. Sci. 2021, 11, 59. [Google Scholar] [CrossRef]
- Pousson, J.E.; Voicikas, A.; Bernhofs, V.; Pipinis, E.; Burmistrova, L.; Lin, Y.P.; Griškova-Bulanova, I. Spectral Characteristics of Eeg during Active Emotional Musical Performance. Sensors 2021, 21, 7466. [Google Scholar] [CrossRef]
- Wang, X.W.; Nie, D.; Lu, B.L. Emotional State Classification from EEG Data Using Machine Learning Approach. Neurocomputing 2014, 129, 94–106. [Google Scholar] [CrossRef]
- Harrivel, A.R.; Stephens, C.L.; Milletich, R.J.; Heinich, C.M.; Last, M.C.; Napoli, N.J.; Abraham, N.A.; Prinzel, L.J.; Motter, M.A.; Pope, A.T. Prediction of Cognitive States during Flight Simulation Using Multimodal Psychophysiological Sensing. In Proceedings of the AIAA Information Systems—AIAA Infotech at Aerospace, Grapevine, TX, USA, 9–13 January 2017; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2017. [Google Scholar]
- Harrivel, A.R.; Liles, C.A.; Stephens, C.L.; Ellis, K.K.; Prinzel, L.J.; Pope, A.T. Psychophysiological Sensing and State Classification for Attention Management in Commercial Aviation. In Proceedings of the AIAA Infotech @ Aerospace Conference, San Diego, CA, USA, 4–8 January 2016; American Institute of Aeronautics and Astronautics Inc., AIAA: Crew Systems and Aviation Operations Branch, NASA Langley Research Center: Hampton, VA, USA, 2016. [Google Scholar]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Multiclass Brain-Computer Interface Classification by Riemannian Geometry. IEEE Trans. Biomed. Eng. 2012, 59, 920–928. [Google Scholar] [CrossRef]
- Majidov, I.; Whangbo, T. Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods. Sensors 2019, 19, 1736. [Google Scholar] [CrossRef]
- Singh, A.; Lal, S.; Guesgen, H.W. Reduce Calibration Time in Motor Imagery Using Spatially Regularized Symmetric Positives-Definite Matrices Based Classification. Sensors 2019, 19, 379. [Google Scholar] [CrossRef]
- Appriou, A.; Pillette, L.; Trocellier, D.; Dutartre, D.; Cichocki, A.; Lotte, F. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification. Sensors 2021, 21, 5740. [Google Scholar] [CrossRef]
- Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring Pilot’s Mental Workload Using Erps and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions. Sensors 2019, 19, 1324. [Google Scholar] [CrossRef]
- Avots, E.; Jermakovs, K.; Bachmann, M.; Päeske, L.; Ozcinar, C.; Anbarjafari, G. Ensemble Approach for Detection of Depression Using EEG Features. Entropy 2022, 24, 211. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, X.; Zhang, W.; Chen, J. Learning Spatial-Spectral-Temporal EEG Features with Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Sabaté, A.; Yauri, J.; Folch, P.; Piera, M.À.; Gil, D. Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals. Appl. Sci. 2022, 12, 2298. [Google Scholar] [CrossRef]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Riemannian Geometry Applied to BCI Classification. In Proceedings of the LVA/ICA 2010—9th International Conference on Latent Variable Analysis and Signal Separation, St. Malo, France, 27–30 September 2010. [Google Scholar]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Classification of Covariance Matrices Using a Riemannian-Based Kernel for BCI Applications. Neurocomputing 2013, 112, 172–178. [Google Scholar] [CrossRef]
- Barachant, A. MEG Decoding Using Riemannian Geometry and Unsupervised Classification; Grenoble University: Grenoble, France, 2014; pp. 1–8. [Google Scholar]
Methods | Mental Class | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) | Standard Error |
---|---|---|---|---|---|---|
RF | NE | 91 | 92 | 91 | 0.010 | |
SS | 82 | 81 | 82 | 0.009 | ||
CA | 87 | 86 | 87 | 0.013 | ||
DA | 82 | 83 | 83 | 0.011 | ||
Macro average | 86 | 86 | 86 | 86 | ||
ERT | NE | 90 | 91 | 90 | 0.011 | |
SS | 80 | 80 | 80 | 0.016 | ||
CA | 86 | 85 | 86 | 0.010 | ||
DA | 81 | 82 | 82 | 0.012 | ||
Macro average | 84 | 84 | 84 | 84 | ||
GTB | NE | 91 | 90 | 91 | 0.016 | |
SS | 82 | 82 | 82 | 0.009 | ||
CA | 87 | 87 | 87 | 0.012 | ||
DA | 83 | 84 | 83 | 0.011 | ||
Macro average | 86 | 86 | 86 | 86 | ||
AdaBoost | NE | 91 | 88 | 89 | 0.009 | |
SS | 80 | 80 | 80 | 0.007 | ||
CA | 83 | 82 | 83 | 0.010 | ||
DA | 79 | 81 | 80 | 0.023 | ||
Macro average | 83 | 83 | 83 | 83 | ||
Voting | NE | 91 | 92 | 92 | 0.013 | |
SS | 82 | 82 | 82 | 0.009 | ||
CA | 87 | 86 | 87 | 0.012 | ||
DA | 83 | 84 | 83 | 0.013 | ||
Macro average | 86 | 86 | 86 | 86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alreshidi, I.; Moulitsas, I.; Jenkins, K.W. Multimodal Approach for Pilot Mental State Detection Based on EEG. Sensors 2023, 23, 7350. https://doi.org/10.3390/s23177350
Alreshidi I, Moulitsas I, Jenkins KW. Multimodal Approach for Pilot Mental State Detection Based on EEG. Sensors. 2023; 23(17):7350. https://doi.org/10.3390/s23177350
Chicago/Turabian StyleAlreshidi, Ibrahim, Irene Moulitsas, and Karl W. Jenkins. 2023. "Multimodal Approach for Pilot Mental State Detection Based on EEG" Sensors 23, no. 17: 7350. https://doi.org/10.3390/s23177350
APA StyleAlreshidi, I., Moulitsas, I., & Jenkins, K. W. (2023). Multimodal Approach for Pilot Mental State Detection Based on EEG. Sensors, 23(17), 7350. https://doi.org/10.3390/s23177350