EEG Signal Processing Techniques and Applications
1. Background
- Healthcare applications, including epilepsy (contributions 1–3) and anaesthesia (contribution 4);
- Studies related to emotion (contributions 5–7);
- Research on motor imagery (contributions 8–10);
- Investigations into external stimulations (contributions 11–13);
- Research concerning mental workload (contributions 14–15);
- Studies in satisfaction (contribution 16).
2. Overview of Contributions
Conflicts of Interest
List of Contributions
- Najafi, T.; Jaafar, R.; Remli, R.; Zaidi, W.A.W. A Classification Model of EEG Signals Based on RNN-LSTM for Diagnosing Focal and Generalized Epilepsy. Sensors 2022, 22, 7269. https://doi.org/10.3390/s22197269.
- Yang, C.Y.; Chen, P.C.; Huang, W.C. Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models. Sensors 2023, 23, 2458. https://doi.org/10.3390/s23052458.
- Alharthi, M.K.; Moria, K.M.; Alghazzawi, D.M.; Tayeb, H.O. Epileptic Disorder Detection of Seizures Using EEG Signals. Sensors 2022, 22, 6592. https://doi.org/10.3390/s22176592.
- Shi, M.; Huang, Z.; Xiao, G.; Xu, B.; Ren, Q.; Zhao, H. Estimating the Depth of Anesthesia from EEG Signals Based on a Deep Residual Shrinkage Network. Sensors 2023, 23, 1008. https://doi.org/10.3390/s23021008.
- Abdel-Hamid, L. An Efficient Machine Learning-Based Emotional Valence Recognition Approach Towards Wearable EEG. Sensors 2023, 23, 1255. https://doi.org/10.3390/s23031255.
- Yuvaraj, R.; Thagavel, P.; Thomas, J.; Fogarty, J.; Ali, F. Comprehensive Analysis of Feature Extraction Methods for Emotion Recognition from Multichannel EEG Recordings. Sensors 2023, 23, 915. https://doi.org/10.3390/s23020915.
- Shah, S.M.A.; Usman, S.M.; Khalid, S.; Rehman, I.U.; Anwar, A.; Hussain, S.; Ullah, S.S.; Elmannai, H.; Algarni, A.D.; Manzoor, W. An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications. Sensors 2022, 22, 9744. https://doi.org/10.3390/s22249744.
- Borra, D.; Fantozzi, S.; Bisi, M.C.; Magosso, E. Modulations of Cortical Power and Connectivity in Alpha and Beta Bands during the Preparation of Reaching Movements. Sensors 2023, 23, 3530. https://doi.org/10.3390/s23073530.
- Hu, H.; Pu, Z.; Li, H.; Liu, Z.; Wang, P. Learning Optimal Time-Frequency-Spatial Features by the CiSSA-CSP Method for Motor Imagery EEG Classification. Sensors 2022, 22, 8526. https://doi.org/10.3390/s22218526.
- Jochumsen, M.; Hougaard, B.I.; Kristensen, M.S.; Knoche, H. Implementing Performance Accommodation Mechanisms in Online BCI for Stroke Rehabilitation: A Study on Perceived Control and Frustration. Sensors 2022, 22, 9051. https://doi.org/10.3390/s22239051.
- Li, Z.; Iramina, K. Spatio-Temporal Neural Dynamics of Observing Non-Tool Manipulable Objects and Interactions. Sensors 2022, 22, 7771. https://doi.org/10.3390/s22207771.
- Mockevičius, A.; Yokota, Y.; Tarailis, P.; Hasegawa, H.; Naruse, Y.; Griškova-Bulanova, I. Extraction of Individual EEG Gamma Frequencies from the Responses to Click-Based Chirp-Modulated Sounds. Sensors 2023, 23, 2826. https://doi.org/10.3390/s23052826.
- Oikonomou, V.P.; Georgiadis, K.; Kalaganis, F.; Nikolopoulos, S.; Kompatsiaris, I. A Sparse Representation Classification Scheme for the Recognition of Affective and Cognitive Brain Processes in Neuromarketing. Sensors 2023, 23, 2480. https://doi.org/10.3390/s23052480.
- Alreshidi, I.; Moulitsas, I.; Jenkins, K.W. Multimodal Approach for Pilot Mental State Detection Based on EEG. Sensors 2023, 23, 7350. https://doi.org/10.3390/s23177350.
- Cao, J.; Garro, E.M.; Zhao, Y. EEG/fNIRS Based Workload Classification Using Functional Brain Connectivity and Machine Learning. Sensors 2022, 22, 7623. https://doi.org/10.3390/s22197623.
- Kim, H.; Miyakoshi, M.; Kim, Y.; Stapornchaisit, S.; Yoshimura, N.; Koike, Y. Electroencephalography Reflects User Satisfaction in Controlling Robot Hand through Electromyographic Signals. Sensors 2023, 23, 277. https://doi.org/10.3390/s23010277.
References
- Pievani, M.; de Haan, W.; Wu, T.; Seeley, W.W.; Frisoni, G.B. Functional network disruption in the degenerative dementias. Lancet Neurol. 2011, 10, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Lioi, G.; Bell, S.L.; Smith, D.C.; Simpson, D.M. Directional connectivity in the EEG is able to discriminate wakefulness from NREM sleep. Physiol. Meas. 2017, 38, 1802–1820. [Google Scholar] [CrossRef] [PubMed]
- Dash, G.K.; Rathore, C.; Jeyaraj, M.K.; Wattamwar, P.; Sarma, S.P.; Radhakrishnan, K. Interictal regional paroxysmal fast activity on scalp EEG is common in patients with underlying gliosis. Clin. Neurophysiol. 2018, 129, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Renzel, R.; Baumann, C.R.; Mothersill, I.; Poryazova, R. Persistent generalized periodic discharges: A specific marker of fatal outcome in cerebral hypoxia. Clin. Neurophysiol. 2017, 128, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Visani, E.; Varotto, G.; Binelli, S.; Fratello, L.; Franceschetti, S.; Avanzini, G.; Panzica, F. Photosensitive epilepsy: Spectral and coherence analyses of EEG using 14 Hz intermittent photic stimulation. Clin. Neurophysiol. 2010, 121, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Terada, K.; Suzuki, N.; Ishisaka, M.; Naitoh, Y.; Ishihara, R.; Shimoeda, H.; Konagaya, T.; Inoue, Y. P1-3-10. Effect of hyperventilation on seizures and EEG findings during routine EEG. Clin. Neurophysiol. 2018, 129, e38. [Google Scholar] [CrossRef]
- Cao, J.; Grajcar, K.; Shan, X.; Zhao, Y.; Zou, J.; Chen, L.; Li, Z.; Grunewald, R.; Zis, P.; De Marco, M.; et al. Using interictal seizure-free EEG data to recognise patients with epilepsy based on machine learning of brain functional connectivity. Biomed. Signal Process. Control 2021, 67, 102554. [Google Scholar] [CrossRef]
- Hassani, M.; Karami, M. Noise estimation in electroencephalogram signal by using volterra series coefficients. J. Med. Signals Sens. 2015, 5, 192–200. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; He, F.; Guo, Y. EEG Signal Processing Techniques and Applications. Sensors 2023, 23, 9056. https://doi.org/10.3390/s23229056
Zhao Y, He F, Guo Y. EEG Signal Processing Techniques and Applications. Sensors. 2023; 23(22):9056. https://doi.org/10.3390/s23229056
Chicago/Turabian StyleZhao, Yifan, Fei He, and Yuzhu Guo. 2023. "EEG Signal Processing Techniques and Applications" Sensors 23, no. 22: 9056. https://doi.org/10.3390/s23229056
APA StyleZhao, Y., He, F., & Guo, Y. (2023). EEG Signal Processing Techniques and Applications. Sensors, 23(22), 9056. https://doi.org/10.3390/s23229056