The Effect of Cognitive Task, Gait Speed, and Age on Cognitive–Motor Interference during Walking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.2.1. Cognitive Tasks
2.2.2. Motor Performance
2.3. Sample Size Calculation
2.4. Statistical Analysis
3. Results
3.1. Main Effect of Task
3.2. Main Effect of Speed
3.3. Main Effect of Group
3.4. Task X Speed Interaction Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plummer-D’Amato, P.; Altmann, L.J.; Saracino, D.; Fox, E.; Behrman, A.L.; Marsiske, M. Interactions between cognitive tasks and gait after stroke: A dual task study. Gait Posture 2008, 27, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H.; Johnston, J. Attentional Limitations in Dual-Task Situations; Psychology Press: Hove, UK, 1998; pp. 155–189. [Google Scholar]
- Plummer, P.; Eskes, G.; Wallace, S.; Giuffrida, C.; Fraas, M.; Campbell, G.; Clifton, K.-L.; Skidmore, E.R. Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Arch. Phys. Med. Rehabil. 2013, 94, 2565–2574.e6. [Google Scholar] [CrossRef] [PubMed]
- Plummer-D’Amato, P.; Brancato, B.; Dantowitz, M.; Birken, S.; Bonke, C.; Furey, E. Effects of gait and cognitive task difficulty on cognitive-motor interference in aging. J. Aging Res. 2012, 2012, 583894. [Google Scholar] [CrossRef] [PubMed]
- Ebersbach, G.; Dimitrijevic, M.R.; Poewe, W. Influence of concurrent tasks on gait: A dual-task approach. Percept. Mot. Ski. 1995, 81, 107–113. [Google Scholar] [CrossRef]
- Maclean, L.M.; Brown, L.J.; Khadra, H.; Astell, A.J. Observing prioritization effects on cognition and gait: The effect of increased cognitive load on cognitively healthy older adults’ dual-task performance. Gait Posture 2017, 53, 139–144. [Google Scholar] [CrossRef]
- Patel, P.; Lamar, M.; Bhatt, T. Effect of type of cognitive task and walking speed on cognitive-motor interference during dual-task walking. Neuroscience 2014, 260, 140–148. [Google Scholar] [CrossRef]
- Hausdorff, J.M.; Schweiger, A.; Herman, T.; Yogev-Seligmann, G.; Giladi, N. Dual-task decrements in gait: Contributing factors among healthy older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1335–1343. [Google Scholar] [CrossRef]
- Doi, T.; Asai, T.; Hirata, S.; Ando, H. Dual-task costs for whole trunk movement during gait. Gait Posture 2011, 33, 712–714. [Google Scholar] [CrossRef]
- Beauchet, O.; Dubost, V.; Aminian, K.; Gonthier, R.; Kressig, R.W. Dual-task-related gait changes in the elderly: Does the type of cognitive task matter? J. Mot. Behav. 2005, 37, 259. [Google Scholar]
- Nascimbeni, A.; Minchillo, M.; Salatino, A.; Morabito, U.; Ricci, R. Gait attentional load at different walking speeds. Gait Posture 2015, 41, 304–306. [Google Scholar] [CrossRef]
- Dennis, A.; Dawes, H.; Elsworth, C.; Collett, J.; Howells, K.; Wade, D.T.; Izadi, H.; Cockburn, J. Fast walking under cognitive-motor interference conditions in chronic stroke. Brain Res. 2009, 1287, 104–110. [Google Scholar] [CrossRef]
- Kang, H.G.; Dingwell, J.B. Effects of walking speed, strength and range of motion on gait stability in healthy older adults. J. Biomech. 2008, 41, 2899–2905. [Google Scholar] [CrossRef]
- Lundin-Olsson, L.; Nyberg, L.; Gustafson, Y. Stops walking when talking as a predictor of falls in elderly people. Lancet 1997, 349, 617. [Google Scholar] [CrossRef]
- Beauchet, O.; Kressig, R.W.; Najafi, E.; Aminian, K.; Dubost, V.; Mourey, F. Age-related decline of gait control under a dual-task condition. J. Am. Geriatr. Soc. 2003, 51, 1187–1188. [Google Scholar] [CrossRef] [PubMed]
- Muir-Hunter, S.; Wittwer, J. Dual-task testing to predict falls in community-dwelling older adults: A systematic review. Physiotherapy 2016, 102, 29–40. [Google Scholar] [CrossRef] [PubMed]
- MacAulay, R.K.; Wagner, M.T.; Szeles, D.; Milano, N.J. Improving sensitivity to detect mild cognitive impairment: Cognitive load dual-task gait speed assessment. J. Int. Neuropsychol. Soc. 2017, 23, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Kean, E. Comparison of the Folstein Mini Mental State Examination (MMSE) to the Montreal Cognitive Assessment (MoCA) as a cognitive screening tool in an inpatient rehabilitation setting. Neurosci. Med. 2010, 1, 39–42. [Google Scholar] [CrossRef]
- Enright, P.L.; McBurnie, M.A.; Bittner, V.; Tracy, R.P.; McNamara, R.; Arnold, A.; Newman, A.B. The 6-min walk test: A quick measure of functional status in elderly adults. Chest 2003, 123, 387–398. [Google Scholar] [CrossRef]
- Nuechterlein, K.H.; Parasuraman, R.; Jiang, Q. Visual sustained attention: Image degradation produces rapid sensitivity decrement over time. Science 1983, 220, 327–329. [Google Scholar] [CrossRef]
- Smith, M.R.; Marcora, S.M.; Coutts, A.J. Mental fatigue impairs intermittent running performance. Med. Sci. Sports Exerc. 2015, 47, 1682–1690. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Lischke, A.; Katlun, F.; Gube, M.; Zschorlich, V.; Skripitz, R.; Weippert, M. Mental fatigue increases gait variability during dual-task walking in old adults. J. Gerontol. Ser. A 2018, 73, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, P.C.R.; Barbieri, F.A.; Zijdewind, I.; Gobbi, L.T.B.; Lamoth, C.; Hortobágyi, T. Effects of experimentally induced fatigue on healthy older adults’ gait: A systematic review. PLoS ONE 2019, 14, e0226939. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.A.; Dos Santos, P.C.R.; Lirani-Silva, E.; Vitório, R.; Gobbi, L.T.B.; Van Diëen, J.H. Systematic review of the effects of fatigue on spatiotemporal gait parameters. J. Back Musculoskelet. Rehabil. 2013, 26, 125–131. [Google Scholar] [CrossRef]
- Dubost, V.; Annweiler, C.; Aminian, K.; Najafi, B.; Herrmann, F.R.; Beauchet, O. Stride-to-stride variability while enumerating animal names among healthy young adults: Result of stride velocity or effect of attention-demanding task? Gait Posture 2008, 27, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Dubost, V.; Herrmann, F.R.; Kressig, R.W. Stride-to-stride variability while backward counting among healthy young adults. J. Neuroeng. Rehabil. 2005, 2, 26. [Google Scholar] [CrossRef] [PubMed]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Hollman, J.H.; Kovash, F.M.; Kubik, J.J.; Linbo, R.A. Age-related differences in spatiotemporal markers of gait stability during dual task walking. Gait Posture 2007, 26, 113–119. [Google Scholar] [CrossRef]
- Yogev, G.; Giladi, N.; Peretz, C.; Springer, S.; Simon, E.S.; Hausdorff, J.M. Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? Eur. J. Neurosci. 2005, 22, 1248–1256. [Google Scholar] [CrossRef]
- Doi, T.; Makizako, H.; Shimada, H.; Yoshida, D.; Ito, K.; Kato, T.; Ando, H.; Suzuki, T. Brain atrophy and trunk stability during dual-task walking among older adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2012, 67, 790–795. [Google Scholar] [CrossRef]
- Taylor, M.E.; Delbaere, K.; Mikolaizak, A.S.; Lord, S.R.; Close, J.C. Gait parameter risk factors for falls under simple and dual task conditions in cognitively impaired older people. Gait Posture 2013, 37, 126–130. [Google Scholar] [CrossRef]
- Guedes, R.C.; Dias, R.C.; Pereira, L.S.; Silva, S.L.; Lustosa, L.P.; Dias, J. Influence of dual task and frailty on gait parameters of older community-dwelling individuals. Braz. J. Phys. Ther. 2014, 18, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya, E.; Dawes, H.; Smith, L.; Dennis, A.; Howells, K.; Cockburn, J. Cognitive motor interference while walking: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Beauchet, O.; Annweiler, C.; Allali, G.; Berrut, G.; Herrmann, F.R.; Dubost, V. Recurrent falls and dual task–related decrease in walking speed: Is there a relationship? J. Am. Geriatr. Soc. 2008, 56, 1265–1269. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V.E.; Janke, A.A.; Shumway-Cook, A. Effects of instructed focus and task difficulty on concurrent walking and cognitive task performance in healthy young adults. Exp. Brain Res. 2010, 207, 65–73. [Google Scholar] [CrossRef]
- Tombu, M.; Jolicœur, P. A central capacity sharing model of dual-task performance. J. Exp. Psychol. Hum. Percept. Perform. 2003, 29, 3–18. [Google Scholar] [CrossRef]
- Pashler, H. Dual-task interference in simple tasks: Data and theory. Psychol. Bull. 1994, 116, 220–244. [Google Scholar] [CrossRef]
- Huang, H.-J.; Mercer, V.S. Dual-task methodology: Applications in studies of cognitive and motor performance in adults and children. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2001, 13, 133–140. [Google Scholar]
- Miyai, I.; Tanabe, H.C.; Sase, I.; Eda, H.; Oda, I.; Konishi, I.; Tsunazawa, Y.; Suzuki, T.; Yanagida, T.; Kubota, K. Cortical mapping of gait in humans: A near-infrared spectroscopic topography study. Neuroimage 2001, 14, 1186–1192. [Google Scholar] [CrossRef]
- Bhatt, T.; Wening, J.; Pai, Y.-C. Influence of gait speed on stability: Recovery from anterior slips and compensatory stepping. Gait Posture 2005, 21, 146–156. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical walking pattern changes in the fit and healthy elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef]
- Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Age-related differences in walking stability. Age Ageing 2003, 32, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Dingwell, J.B.; Marin, L.C. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 2006, 39, 444–452. [Google Scholar] [CrossRef] [PubMed]
- England, S.A.; Granata, K.P. The influence of gait speed on local dynamic stability of walking. Gait Posture 2007, 25, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Ihira, H.; Makino, K.; Kihara, Y.; Itou, K.; Furuna, T. The effect of gait speed and gait phase to the allocation of attention during dual task gait. J. Phys. Ther. Sci. 2018, 30, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Kurosawa, K. Effects of various walking speeds on probe reaction time during treadmill walking. Percept. Mot. Ski. 1994, 78, 768–770. [Google Scholar] [CrossRef]
- Lajoie, Y.; Jehu, D.A.; Richer, N.; Tran, Y. Reaction time is slower when walking at a slow pace in young adults. J. Mot. Behav. 2016, 48, 153–154. [Google Scholar] [CrossRef]
- Brach, J.S.; Berthold, R.; Craik, R.; VanSwearingen, J.M.; Newman, A.B. Gait variability in community-dwelling older adults. J. Am. Geriatr. Soc. 2001, 49, 1646–1650. [Google Scholar] [CrossRef]
- Deviterne, D.; Gauchard, G.C.; Jamet, M.; Vançon, G.; Perrin, P.P. Added cognitive load through rotary auditory stimulation can improve the quality of postural control in the elderly. Brain Res. Bull. 2005, 64, 487–492. [Google Scholar] [CrossRef]
- Riley, M.A.; Baker, A.A.; Schmit, J.M. Inverse relation between postural variability and difficulty of a concurrent short-term memory task. Brain Res. Bull. 2003, 62, 191–195. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.-C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef]
- Hamacher, D.; Herold, F.; Wiegel, P.; Hamacher, D.; Schega, L. Brain activity during walking: A systematic review. Neurosci. Biobehav. Rev. 2015, 57, 310–327. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. 2018, 48, 361–375. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Epstein, N.; Mahoney, J.R.; Izzetoglu, M.; Blumen, H.M. Neuroimaging of mobility in aging: A targeted review. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, 1375–1388. [Google Scholar] [CrossRef]
- Makizako, H.; Shimada, H.; Park, H.; Tsutsumimoto, K.; Uemura, K.; Suzuki, T. Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: A fNIRS study. Aging Clin. Exp. Res. 2013, 25, 539–544. [Google Scholar]
- Kazui, H.; Kitagaki, H.; Mori, E. Cortical activation during retrieval of arithmetical facts and actual calculation: A functional magnetic resonance imaging study. Psychiatry Clin. Neurosci. 2000, 54, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Miyai, I.; Suzuki, M.; Kubota, K. Gait capacity affects cortical activation patterns related to speed control in the elderly. Exp. Brain Res. 2009, 193, 445–454. [Google Scholar] [CrossRef]
- Suzuki, M.; Miyai, I.; Ono, T.; Oda, I.; Konishi, I.; Kochiyama, T.; Kubota, K. Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill: An optical imaging study. Neuroimage 2004, 23, 1020–1026. [Google Scholar] [CrossRef]
- Lin, C.-C.; Bair, W.-N.; Willson, J. Age differences in brain activity in dorsolateral prefrontal cortex and supplementary motor areas during three different walking speed tasks. Hum. Mov. Sci. 2022, 85, 102982. [Google Scholar] [CrossRef]
- Hawkins, K.A.; Fox, E.J.; Daly, J.J.; Rose, D.K.; Christou, E.A.; McGuirk, T.E.; Otzel, D.M.; Butera, K.A.; Chatterjee, S.A.; Clark, D.J. Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. Hum. Mov. Sci. 2018, 59, 46–55. [Google Scholar] [CrossRef]
- Holtzer, R.; Mahoney, J.R.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Verghese, J. fNIRS study of walking and walking while talking in young and old individuals. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2011, 66, 879–887. [Google Scholar] [CrossRef]
Characteristics | Younger Adults (Mean ± SD) | Older Adults (Mean ± SD) |
---|---|---|
Age (y) | 23.0 ± 2.1 | 62.5 ± 6.5 |
Sex (M/F) | 5/5 | 5/5 |
Weight (kg) | 65.5 ± 10.2 | 90.3 ± 18.0 |
Height (cm) | 165.1 ± 9.1 | 170.6 ± 11.6 |
MoCA | - | 28.3 ± 1.16 |
6MWT (m) | - | 434.3 ± 137.8 |
Task | Condition | Cognitive Scores | |
---|---|---|---|
Young Adults | Older Adults | ||
VMRT | Single-Task | 330 ± 50 | 370 ± 100 |
Dual-Task | |||
Slow | 470 ± 150 | 490 ± 130 | |
Preferred | 390 ± 100 | 430 ± 130 | |
Fast | 440 ± 330 | 440 ± 150 | |
WLG | Single-Task | 6.29 ±1.76 | 5.33 ±1.44 |
Dual-Task | |||
Slow | 5.82 ± 2.19 | 4.56 ± 1.07 | |
Preferred | 5.82 ± 2.24 | 4.67 ± 1.17 | |
Fast | 4.71 ± 2.82 | 3.50 ± 1.01 | |
SS | Single-Task | 4.47 ± 1.66 | 5.11 ± 3.74 |
Dual-Task | |||
Slow | 2.94 ± 1.39 | 4.28 ± 3.25 | |
Preferred | 2.41 ± 1.28 | 2.72 ± 1.87 | |
Fast | 2.65 ± 1.27 | 2.33 ± 2.10 | |
VS | Single-Task | 14.59 ± 3.06 | 12.83 ± 1.16 |
Dual-Task | |||
Slow | 11.06 ± 2.88 | 9.83 ± 3.26 | |
Preferred | 11.94 ± 2.59 | 10.72 ± 3.66 | |
Fast | 13.19 ± 2.76 | 11.61 ± 3.64 |
Speed | Condition | Gait Speed (m/s) | Step Length (/bh) | ||
---|---|---|---|---|---|
Young Adults | Older Adults | Young Adults | Older Adults | ||
Slow | Single-Task | 0.76 ± 0.14 | 0.70 ± 0.11 | 0.31 ± 0.05 | 0.30 ± 0.03 |
Dual-Task | |||||
VMRT | 0.65 ± 0.13 | 0.59 ± 0.10 | 0.28 ± 0.04 | 0.25 ± 0.04 | |
WLG | 0.63 ± 0.12 | 0.55 ± 0.10 | 0.30 ± 0.03 | 0.27 ± 0.05 | |
SS | 0.68 ± 0.10 | 0.62 ± 0.12 | 0.28 ± 0.05 | 0.28 ± 0.04 | |
VS | 0.68 ± 0.12 | 0.62 ± 0.15 | 0.29 ± 0.04 | 0.28 ± 0.05 | |
Preferred | Single-Task | 1.18 ± 0.20 | 1.03 ± 0.13 | 0.40 ± 0.05 | 0.36 ± 0.04 |
Dual-Task | |||||
VMRT | 1.02 ± 0.17 | 0.79 ± 0.19 | 0.36 ± 0.06 | 0.30 ± 0.06 | |
WLG | 0.84 ± 0.14 | 0.71 ± 0.14 | 0.32 ± 0.06 | 0.29 ± 0.04 | |
SS | 0.85 ± 0.21 | 0.57 ± 0.18 | 0.33 ± 0.05 | 0.30 ± 0.05 | |
VS | 1.00 ± 0.15 | 0.82 ± 0.19 | 0.36 ± 0.05 | 0.31 ± 0.05 | |
Fast | Single-Task | 1.69 ± 0.30 | 1.43 ± 0.24 | 0.48 ± 0.07 | 0.42 ± 0.05 |
Dual-Task | |||||
VMRT | 1.55 ± 0.23 | 1.28 ± 0.23 | 0.44 ± 0.07 | 0.38 ± 0.05 | |
WLG | 1.11 ± 0.26 | 0.85 ± 0.22 | 0.40 ± 0.08 | 0.32 ± 0.07 | |
SS | 1.21 ± 0.26 | 0.88 ± 0.22 | 0.38 ± 0.08 | 0.33 ± 0.06 | |
VS | 1.41 ± 0.27 | 1.02 ± 0.20 | 0.44 ± 0.07 | 0.37 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitts, J.; Singhal, K.; Apte, Y.; Patel, P.; Kannan, L.; Bhatt, T. The Effect of Cognitive Task, Gait Speed, and Age on Cognitive–Motor Interference during Walking. Sensors 2023, 23, 7368. https://doi.org/10.3390/s23177368
Pitts J, Singhal K, Apte Y, Patel P, Kannan L, Bhatt T. The Effect of Cognitive Task, Gait Speed, and Age on Cognitive–Motor Interference during Walking. Sensors. 2023; 23(17):7368. https://doi.org/10.3390/s23177368
Chicago/Turabian StylePitts, Jessica, Kunal Singhal, Yashashree Apte, Prakruti Patel, Lakshmi Kannan, and Tanvi Bhatt. 2023. "The Effect of Cognitive Task, Gait Speed, and Age on Cognitive–Motor Interference during Walking" Sensors 23, no. 17: 7368. https://doi.org/10.3390/s23177368
APA StylePitts, J., Singhal, K., Apte, Y., Patel, P., Kannan, L., & Bhatt, T. (2023). The Effect of Cognitive Task, Gait Speed, and Age on Cognitive–Motor Interference during Walking. Sensors, 23(17), 7368. https://doi.org/10.3390/s23177368