Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results
Abstract
:1. Introduction
2. Searching Strategy
- (1)
- Web of Science;
- (2)
- IEEE Explore Digital Library
- (3)
- Association for Computing Machinery;
- (4)
- Springer Link;
- (5)
- Google Scholar.
- (1)
- Publication date: between January 2015 and January 2023.
- (2)
- Searching domain: science, technology, or computer science.
- (3)
- Publication types: journals, proceedings, and conferences.
- (4)
- Language: English.
- (1)
- Studies that do not include FMCW mmW radar-based gesture recognition.
- (2)
- Studies that do not provide details of experiments or experimental designs.
- (3)
- Studies that replicate with others.
- (4)
- Studies for which the full text of the paper is not available.
3. FMCW mmW Radar and Gestures
3.1. FMCW mmW Radar
3.2. Gestures
4. Methodologies
4.1. Pre-Processing
4.2. Feature Extraction
4.3. Datasets
4.4. Classification Algorithms
4.5. Generalization
5. Challenges
5.1. Gesture Recognition in Complex Environments
5.2. Real Time and Complexity of Gestures
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, W.; Ren, Y.; Liu, Y.; Wang, Z.; Wang, X. Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures. In Proceedings of the ICASSP 2021—2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 4905–4909. [Google Scholar]
- Li, A.; Bodanese, E.; Poslad, S.; Hou, T.; Wu, K.; Luo, F. A Trajectory-Based Gesture Recognition in Smart Homes Based on the Ultrawideband Communication System. IEEE Internet Things J. 2022, 9, 22861–22873. [Google Scholar] [CrossRef]
- Geng, K.; Yin, G. Using Deep Learning in Infrared Images to Enable Human Gesture Recognition for Autonomous Vehicles. IEEE Access 2020, 8, 88227–88240. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, S.M. Smart Wearable Hand Device for Sign Language Interpretation System with Sensors Fusion. IEEE Sensors J. 2018, 18, 1224–1232. [Google Scholar] [CrossRef]
- Taranta, E.M.; Simons, T.K.; Laviola, J.J.; Sukthankar, R. Exploring the Benefits of Context in 3D Gesture Recognition for Game-Based Virtual Environments. ACM Trans. Interact. Intell. Syst. 2015, 5, 1. [Google Scholar] [CrossRef]
- Singh, A.D.; Ram, S.S.; Vishwakarma, S. Simulation of the radar cross-section of dynamic human motions using virtual reality data and ray tracing. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1555–1560. [Google Scholar]
- Kudrinko, K.; Flavin, E.; Zhu, X.; Li, Q. Wearable Sensor-Based Sign Language Recognition: A Comprehensive Review. IEEE Rev. Biomed. Eng. 2021, 14, 82–97. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Yan, W. Dynamic Hand Gesture Recognition Based on Signals from Specialized Data Glove and Deep Learning Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 2509014. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, J.; Xie, H. Surface-Electromyography-Based Gesture Recognition Using a Multistream Fusion Strategy. IEEE Access 2021, 9, 50583–50592. [Google Scholar] [CrossRef]
- Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and Gyroscope Sensors. IEEE Sens. J. 2016, 16, 6425–6432. [Google Scholar] [CrossRef]
- Hnoohom, N.; Mekruksavanich, S.; Jitpattanakul, A. Physical Activity Recognition Based on Deep Learning Using Photoplethysmography and Wearable Inertial Sensors. Electronics 2023, 12, 693. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Fu, Y.; Yao, D.; Xie, L.; Zhou, M. Multi-Hand Gesture Recognition Using Automotive FMCW Radar Sensor. Remote Sens. 2022, 14, 2374. [Google Scholar] [CrossRef]
- Ding, I.-J.; Zheng, N.-W. CNN Deep Learning with Wavelet Image Fusion of CCD RGB-IR and Depth-Grayscale Sensor Data for Hand Gesture Intention Recognition. Sensors 2022, 22, 803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wang, Z.; Wu, X. WiFi Signal-Based Gesture Recognition Using Federated Parameter-Matched Aggregation. Sensors 2022, 22, 2349. [Google Scholar] [CrossRef]
- Breland, D.S.; Dayal, A.; Jha, A.; Yalavarthy, P.K.; Pandey, O.J.; Cenkeramaddi, L.R. Robust Hand Gestures Recognition Using a Deep CNN and Thermal Images. IEEE Sensors J. 2021, 21, 26602–26614. [Google Scholar] [CrossRef]
- Caputo, M.; Denker, K.; Dums, B.; Umlauf, G. 3D hand gesture recognition based on sensor fusion of commodity hardware. In Proceedings of the Mensch & Computer 2012—Workshopband: Interaktiv Informiert—Allgegenwärtig und Allumfassend!? Konstanz, Germany, 9–12 September 2012; pp. 293–302. [Google Scholar]
- Zabatani, A.; Surazhsky, V.; Sperling, E.; Moshe, S.B.; Menashe, O.; Silver, D.H.; Karni, Z.; Bronstein, A.M.; Bronstein, M.M.; Kimmel, R. Intel® RealSense™ SR300 Coded Light Depth Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2333–2345. [Google Scholar] [CrossRef] [PubMed]
- Weichert, F.; Bachmann, D.; Rudak, B.; Fisseler, D. Analysis of the Accuracy and Robustness of the Leap Motion Controller. Sensors 2013, 13, 6380–6393. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Toomajian, B. Hand Gesture Recognition Using Micro-Doppler Signatures with Convolutional Neural Network. IEEE Access 2016, 4, 7125–7130. [Google Scholar] [CrossRef]
- Bu, X. Human Motion Gesture Recognition Algorithm in Video Based on Convolutional Neural Features of Training Images. IEEE Access 2020, 8, 160025–160039. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, H.; Zhu, R.; Wu, F.; Yin, L.; Yang, Y. WiTransformer: A Novel Robust Gesture Recognition Sensing Model with WiFi. Sensors 2023, 23, 2612. [Google Scholar] [CrossRef]
- Phun, J.A.P.Y.; Safitri, C. Smartphone Authentication with Hand Gesture Recognition (HGR) Using LiDAR. In Proceedings of the 2021 5th International Conference on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, 24–25 November 2021; pp. 93–98. [Google Scholar]
- Liu, B.; Ma, K.; Fu, H.; Wang, K.; Meng, F. Recent Progress of Silicon-Based Millimeter-Wave SoCs for Short-Range Radar Imaging and Sensing. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 2667–2671. [Google Scholar] [CrossRef]
- Li, Y.; Gu, C.; Mao, J. 4-D Gesture Sensing Using Reconfigurable Virtual Array Based on a 60-GHz FMCW MIMO Radar Sensor. IEEE Trans. Microw. Theory Tech. 2022, 70, 3652–3665. [Google Scholar] [CrossRef]
- Lien, J.; Gillian, N.; Karagozler, M.E.; Amihood, P.; Schwesig, C.; Olson, E.; Raja, H.; Poupyrev, I. Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar. ACM Trans. Graph. 2016, 35, 142. [Google Scholar] [CrossRef]
- Qu, L.; Wu, H.; Yang, T.; Zhang, L.; Sun, Y. Dynamic Hand Gesture Classification Based on Multichannel Radar Using Multistream Fusion 1-D Convolutional Neural Network. IEEE Sensors J. 2022, 22, 24083–24093. [Google Scholar] [CrossRef]
- Zhao, Y.; Sark, V.; Krstic, M.; Grass, E. Low Complexity Radar Gesture Recognition Using Synthetic Training Data. Sensors 2023, 23, 308. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zheng, H.; Feng, X.; Hu, J. ML-HGR-Net: A Meta-Learning Network for FMCW Radar Based Hand Gesture Recognition. IEEE Sensors J. 2022, 22, 10808–10817. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, H.; Ma, C. A Robust Hand Gesture Sensing and Recognition Based on Dual-Flow Fusion with FMCW Radar. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 4028105. [Google Scholar] [CrossRef]
- Yadav, S.S.; Agarwal, R.; Bharath, K.; Rao, S.; Thakur, C.S. tinyRadar for Fitness: A Contactless Framework for Edge Computing. IEEE Trans. Biomed. Circuits Syst. 2023, 17, 192–201. [Google Scholar] [CrossRef]
- Yang, Z.; Zheng, X. Hand Gesture Recognition Based on Trajectories Features and Computation-Efficient Reused LSTM Network. IEEE Sensors J. 2021, 21, 16945–16960. [Google Scholar] [CrossRef]
- Du, C.; Wang, X.; Yuan, Z.; Xu, Y. Design of gesture recognition system based on 77GHz millimeter wave radar. In Proceedings of the 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Guangzhou, China, 19–22 May 2019; IEEE: Piscateville, NJ, USA, 2019. [Google Scholar]
- Ahmed, S.; Kim, W.; Park, J.; Cho, S.H. Radar-Based Air-Writing Gesture Recognition Using a Novel Multistream CNN Approach. IEEE Internet Things J. 2022, 9, 23869–23880. [Google Scholar] [CrossRef]
- Zheng, L.; Bai, J.; Zhu, X.; Huang, L.; Shan, C.; Wu, Q.; Zhang, L. Dynamic Hand Gesture Recognition in In-Vehicle Environment Based on FMCW Radar and Transformer. Sensors 2021, 21, 6368. [Google Scholar] [CrossRef]
- Mauro, G.; Chmurski, M.; Servadei, L.; Pegalajar-Cuellar, M.; Morales-Santos, D.P. Few-Shot User-Definable Radar-Based Hand Gesture Recognition at the Edge. IEEE Access 2022, 10, 29741–29759. [Google Scholar] [CrossRef]
- Chmurski, M.; Mauro, G.; Santra, A.; Zubert, M.; Dagasan, G. Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module. Sensors 2021, 21, 7298. [Google Scholar] [CrossRef]
- Nallabolu, P.; Zhang, L.; Hong, H.; Li, C. Human Presence Sensing and Gesture Recognition for Smart Home Applications with Moving and Stationary Clutter Suppression Using a 60-GHz Digital Beamforming FMCW Radar. IEEE Access 2021, 9, 72857–72866. [Google Scholar] [CrossRef]
- Gan, L.; Liu, Y.; Li, Y.; Zhang, R.; Huang, L.; Shi, C. Gesture Recognition System Using 24 GHz FMCW Radar Sensor Realized on Real-Time Edge Computing Platform. IEEE Sensors J. 2022, 22, 8904–8914. [Google Scholar] [CrossRef]
- Jhaung, Y.C.; Lin, Y.M.; Zha, C.; Leu, J.S.; Köppen, M. Implementing a Hand Gesture Recognition System Based on Range-Doppler Map. Sensors 2022, 22, 4260. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zhao, Z.; Wang, Y.; Zeng, T.; Wang, J.; Sui, Y. FMCW Radar-Based Hand Gesture Recognition Using Spatiotemporal Deformable and Context-Aware Convolutional 5-D Feature Representation. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 5107011. [Google Scholar] [CrossRef]
- Grobelny, P.; Narbudowicz, A. MM-Wave Radar-Based Recognition of Multiple Hand Gestures Using Long Short-Term Memory (LSTM) Neural Network. Electronics 2022, 11, 787. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Ritchie, M.; Griffiths, H. Sparsity-Driven Micro-Doppler Feature Extraction for Dynamic Hand Gesture Recognition. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 655–665. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, L.; Shen, P.; Song, J.; Shah, S.A.A.; Bennamoun, M. Continuous Gesture Segmentation and Recognition Using 3DCNN and Convolutional LSTM. IEEE Trans. Multimed. 2018, 21, 1011–1021. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, Z.; Pi, Y. Dynamic gesture recognition with a terahertz radar based on range profile sequences and doppler signatures. Sensors 2018, 18, 10. [Google Scholar] [CrossRef]
- Ren, A.; Wang, Y.; Yang, X.; Zhou, M. A Dynamic Continuous Hand Gesture Detection and Recognition Method with FMCW Radar. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 1208–1213. [Google Scholar]
- Molchanov, P.; Gupta, S.; Kim, K.; Pulli, K. Multi-sensor system for driver’s hand-gesture recognition. In Proceedings of the 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015; pp. 1–8. [Google Scholar]
- Fhager, L.O.; Heunisch, S.; Dahlberg, H.; Evertsson, A.; Wernersson, L.-E. Pulsed Millimeter Wave Radar for Hand Gesture Sensing and Classification. IEEE Sens. Lett. 2019, 3, 3502404. [Google Scholar] [CrossRef]
- Ryu, S.J.; Suh, J.S.; Baek, S.H.; Hong, S.; Kim, J.H. Feature-Based Hand Gesture Recognition Using an FMCW Radar and its Temporal Feature Analysis. IEEE Sens. J. 2018, 18, 7593–7602. [Google Scholar] [CrossRef]
- Goncharenko, Y.V.; Farquharson, G.; Gorobets, V.; Gutnik, V.; Tsarin, Y. Adaptive moving target indication in a windblown clutter environment. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 2989–2997. [Google Scholar] [CrossRef]
- Ritchie, M.; Ash, M.; Chen, Q.; Chetty, K. Through Wall Radar Classification of Human Micro-Doppler Using Singular Value Decomposition Analysis. Sensors 2016, 16, 1401. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Park, J.; Suh, Y.-J. Improving Classification Accuracy of Hand Gesture Recognition Based on 60 GHz FMCW Radar with Deep Learning Domain Adaptation. Electronics 2020, 9, 2140. [Google Scholar] [CrossRef]
- Yoo, S.; Chung, S.; Seol, D.-M.; Cho, S.H. Adaptive Clutter Suppression Algorithm for Detection and Positioning using IR-UWB Radar. In Proceedings of the 2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS), Odessa, Ukraine, 4–7 September 2018; pp. 40–43. [Google Scholar]
- Sor, R.; Sathone, J.S.; Deoghare, S.U.; Sutaone, M.S. OS-CFAR Based on Thresholding Approaches for Target Detection. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6. [Google Scholar]
- Xia, Z.; Xu, F. Time-Space Dimension Reduction of Millimeter-Wave Radar Point-Clouds for Smart-Home Hand-Gesture Recognition. IEEE Sensors J. 2022, 22, 4425–4437. [Google Scholar] [CrossRef]
- Ansari, F.; Taban, M.R. Implementation of sequential algorithm in batch processing for clutter and direct signal cancellation in passive bistatic radars. In Proceedings of the 2013 21st Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 14–16 May 2013; pp. 1–6. [Google Scholar]
- Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280. [Google Scholar] [CrossRef]
- Yao, D.; Wang, Y.; Nie, W.; Xie, L.; Zhou, M.; Yang, X. A Multi-feature Fusion Temporal Neural Network for Multi-hand Gesture Recognition using Millimeter-wave Radar Sensor. In Proceedings of the 2021 IEEE Asia-Pacific Microwave Conference (APMC), Brisbane, Australia, 28 November–1 December 2021; pp. 226–228. [Google Scholar]
- Hazra, S.; Santra, A. Robust Gesture Recognition Using Millimetric-Wave Radar System. IEEE Sens. Lett. 2018, 2, 7001804. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Huang, R.; Wang, R.; Li, J.; Xu, Z. Hand gesture recognition scheme based on millimeter-wave radar with convolutional neural network. In Proceedings of the IET International Radar Conference (IET IRC 2020), Online, 4–6 November 2020; pp. 488–492. [Google Scholar]
- Wang, Y.; Ren, A.; Zhou, M.; Wang, W.; Yang, X. A Novel Detection and Recognition Method for Continuous Hand Gesture Using FMCW Radar. IEEE Access 2020, 8, 167264–167275. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; Lien, J.; Poupyrev, I.; Hilliges, O. Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum. In Proceedings of the UIST 2016–Proceedings of the 29th Annual Symposium on User Interface Software and Technology, Tokyo, Japan, 16–19 October 2016; pp. 851–860. [Google Scholar]
- Huang, R.; Li, Z.; Wang, S.; Wang, R.; Li, J.; Xu, Z. A RD-T Network for Hand Gesture Recognition Based on Millimeter-Wave Sensor. In Proceedings of the 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 23–25 October 2020; pp. 308–312. [Google Scholar]
- Wang, Y.; Wang, S.; Zhou, M.; Nie, W.; Yang, X.; Tian, Z. Two-Stream Time Sequential Network Based Hand Gesture Recognition Method Using Radar Sensor. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Alirezazad, K.; Maurer, L. FMCW Radar-Based Hand Gesture Recognition Using Dual-Stream CNN-GRU Model. In Proceedings of the 2022 24th International Microwave and Radar Conference (MIKON), Gdansk, Poland, 12–14 September 2022; pp. 1–5. [Google Scholar]
- Wang, Y.; Wang, S.S.; Tian, Z.S.; Zhou, M.; Wu, J.J. Two-Stream Fusion Neural Network Approach for Hand Gesture Recognition Based on FMCW Radar. Tien Tzu Hsueh Pao/Acta Electron. Sin. 2019, 47, 1408–1415. [Google Scholar]
- Du, C.; Zhang, L.; Sun, X.; Wang, J.; Sheng, J. Enhanced Multi-Channel Feature Synthesis for Hand Gesture Recognition Based on CNN With a Channel and Spatial Attention Mechanism. IEEE Access 2020, 8, 144610–144620. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, Y.; Jia, X.; Zhou, M.; Xie, L.; Guo, L. Multifeature Fusion-Based Hand Gesture Sensing and Recognition System. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 3507005. [Google Scholar] [CrossRef]
- Xia, Z.; Luomei, Y.; Zhou, C.; Xu, F. Multidimensional Feature Representation and Learning for Robust Hand-Gesture Recognition on Commercial Millimeter-Wave Radar. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4749–4764. [Google Scholar] [CrossRef]
- Ritchie, M.; Capraru, R.; Fioranelli, F. Dop-Net: A Micro-Doppler Radar Data Challenge. Electron. Lett. 2020, 56, 568–570. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, A.; Dong, Z.; Sun, Y.; Zhang, J.; Liu, L.; Ma, H.; Liu, J.; Yang, N. M-Gesture: Person-Independent Real-Time In-Air Gesture Recognition Using Commodity Millimeter Wave Radar. IEEE Internet Things J. 2021, 9, 3397–3415. [Google Scholar] [CrossRef]
- Sun, Y.; Fei, T.; Li, X.; Warnecke, A.; Warsitz, E.; Pohl, N. Real-Time Radar-Based Gesture Detection and Recognition Built in an Edge-Computing Platform. IEEE Sensors J. 2020, 20, 10706–10716. [Google Scholar] [CrossRef]
- Choi, J.-W.; Park, C.-W.; Kim, J.-H. FMCW Radar-Based Real-Time Hand Gesture Recognition System Capable of Out-of-Distribution Detection. IEEE Access 2022, 10, 87425–87434. [Google Scholar] [CrossRef]
- Wang, P.; Liang, T.; Xu, H. Feature-Based Hand Gesture Recognition Using Two-Antenna Doppler Radar System. In Proceedings of the 2022 IEEE MTT-S International Wire-less Symposium (IWS), Harbin, China, 12–15 August 2022; pp. 1–3. [Google Scholar]
- Malysa, G.; Wang, D.; Netsch, L.; Ali, M. Hidden Markov model-based gesture recognition with FMCW radar. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 1017–1021. [Google Scholar]
- Wang, Z.; Yu, Z.; Lou, X.; Guo, B.; Chen, L. Gesture-Radar: A Dual Doppler Radar Based System for Robust Recognition and Quantitative Profiling of Human Gestures. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 32–43. [Google Scholar] [CrossRef]
- Hazra, S.; Santra, A. Radar Gesture Recognition System in Presence of Interference using Self-Attention Neural Network. In Proceedings of the 2019 18th IEEE Interna-tional Conference on Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 1409–1414. [Google Scholar]
- Zhang, G.; Lan, S.; Zhang, K.; Ye, L. Temporal-Range-Doppler Features Interpretation and Recognition of Hand Gestures Using mmW FMCW Radar Sensors. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Wang, Y.; Wang, S.; Zhou, M.; Jiang, Q.; Tian, Z. TS-I3D Based Hand Gesture Recognition Method with Radar Sensor. IEEE Access 2019, 7, 22902–22913. [Google Scholar] [CrossRef]
- Rashid, N.E.A.; Nor, Y.A.I.M.; Sharif, K.K.M.; Khan, Z.I.; Zakaria, N.A. Hand Gesture Recognition using Continuous Wave (CW) Radar based on Hybrid PCA-KNN. In Proceedings of the 2021 IEEE Symposium on Wireless Technology & Applications (ISWTA), Shah Alam, Malaysia, 17 August 2021; pp. 88–92. [Google Scholar]
- Wang, Z.; Li, G.; Yang, L. Dynamic Hand Gesture Recognition Based on Micro-Doppler Radar Signatures Using Hidden Gauss–Markov Models. IEEE Geosci. Remote. Sens. Lett. 2020, 18, 291–295. [Google Scholar] [CrossRef]
- Hang, C.; Zhang, R.; Chen, Z.; Li, C.; Li, Z. Dynamic Gesture Recognition Method Based on Improved DTW Algorithm. In Proceedings of the 2017 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration (ICIICII), Wuhan, China, 2–3 December 2017; pp. 71–74. [Google Scholar]
- Zhu, W.; Yang, Y.; Chen, L.; Xu, J.; Zhang, C.; Guo, H. Application of Generative Adversarial Networks in Gesture Recognition. In Proceedings of the 2022 WRC Symposium on Ad-vanced Robotics and Automation (WRC SARA), Beijing, China, 20 August 2022; pp. 1–6. [Google Scholar]
- Berenguer, A.D.; Oveneke, M.C.; Khalid, H.-U.; Alioscha-Perez, M.; Bourdoux, A.; Sahli, H. GestureVLAD: Combining Unsupervised Features Representation and Spatio-Temporal Aggregation for Doppler-Radar Gesture Recognition. IEEE Access 2019, 7, 137122–137135. [Google Scholar] [CrossRef]
- Zeng, X.; Wu, C.; Ye, W.-B. User-Definable Dynamic Hand Gesture Recognition Based on Doppler Radar and Few-Shot Learning. IEEE Sensors J. 2021, 21, 23224–23233. [Google Scholar] [CrossRef]
- Kern, N.; Steiner, M.; Lorenzin, R.; Waldschmidt, C. Robust Doppler-Based Gesture Recognition With Incoherent Automotive Radar Sensor Networks. IEEE Sens. Lett. 2020, 4, 3501504. [Google Scholar] [CrossRef]
- Arsalan, M.; Santra, A.; Issakov, V. Spiking Neural Network-Based Radar Gesture Recognition System Using Raw ADC Data. IEEE Sens. Lett. 2022, 6, 7001904. [Google Scholar] [CrossRef]
- Arsalan, M.; Santra, A.; Issakov, V. RadarSNN: A Resource Efficient Gesture Sensing System Based on mm-Wave Radar. IEEE Trans. Microw. Theory Tech. 2022, 70, 2451–2461. [Google Scholar] [CrossRef]
Model | Frequency Coverage | Available Bandwidth | Number of Antennas | References |
---|---|---|---|---|
I/AWR1642BOOST | 76~81 GHz | 4 GHz | 2TX, 4RX | [12,27,28] |
I/AWR1843BOOST | 76~81 GHz | 4 GHz | 3TX, 4RX | [29,30] |
I/AWR1443BOOST | 76~81 GHz | 4 GHz | 3TX, 4RX | [31,32] |
I/AWR6843 | 60~64 GHz | 4 GHz | 3TX, 4RX | [33,34] |
BGT60TR13C | 58~63.5 GHz | 5.5 GHz | 1TX, 3RX | [35,36,37] |
BGT24MTR12 | 24~24.2 GHz | 200 MHz | 1TX, 2RX | [38] |
Radar | Resolution | Gestures/Number | Classification Algorithm | Single Features/Average Accuracy | Fusion Features/Average Accuracy | Reference | |||
---|---|---|---|---|---|---|---|---|---|
Range | Velocity | Angular | One-Channel | Multi-Channel | |||||
AWR1642 BOOST | 3.95 cm | 0.2 m/s | ≥0.5° | Macro-gestures/7 Micro-gestures/3 | SVM | RTM/70.69% DTM/87.59% ATM/69.28% | RTM + DTM/89.43% DTM + ATM/98.15% RTM + ATM/91.37% RTM + DTM + ATM/98.48% | \ | [27] |
IWR1642 BOOST | 3.75 cm | 0.032 m/s | ≥0.5° | Macro-gestures/7 Micro-gestures/3 | CNN | DTM/91.34% | 3D-festure/96.61% | \ | [66] |
IWR1642 BOOST | 8.33 cm | 0.19 m/s | ≥0.5° | Macro-gestures/9 Micro-gestures/1 | 3D-CNN | RTM/91.60% DTM/92.80% ATM/92.10% RDM/93.20% DAM/93.90% | Feature Cube (RDAM) 98.10% | \ | [28] |
IWR1443 BOOST | 3.75 cm | 0.8 m/s | ≥0.5° | Macro-gestures/6 | CNN | RTM/89.6% DTM/87.3% ATM/84.3% | \ | RTM + DTM + ATM/91.6% | [31] |
AWR1642 BOOST | 3.75 cm | 0.4 m/s | ≥0.5° | Macro-gestures/6 | VGG-16 | RTM/89.3% DTM/86.3% ATM/87.0% | \ | RTM + DTM + ATM/92.0% | [67] |
AWR1642 BOOST | 3.75 cm | 0.4 m/s | ≥0.5° | Macro-gestures/6 | DTW | RTM/89.50% DTM/89.83% ATM/88.50% | \ | RTM + DTM + ATM/94.50% | [60] |
AWR1642 BOOST | 4.46 cm | 0.4 m/s | ≥0.5° | Macro-gestures/8 | 3D-CNN | RDM/72.16% RAM/82.79% | \ | RDM + RAM/86.95% | [12] |
AWR1843 BOOST | ≥3.75 cm | \ | ≥0.5° | Macro-gestures/7 Micro-gestures/3 | 2D-ResNet18 | RTM/83.70% DTM/88.63% ATM/60.37% | \ | RTM + DTM/91.52% RTM + ATM/73.00% DTM + ATM/84.00% RTM + DTM + ATM/90.48% | [29] |
AWR1843 BOOST | ≥3.75 cm | \ | ≥0.5° | Macro-gestures/7 Micro-gestures/3 | 3D-ResNet18 | RDM/92.26% RAM/87.07% DAM/91.37% | \ | RDM + RAM/90.33% RDM + DAM/92.52% DAM + RAM/89.70% RDM + RAM + DAM/93.30% | [29] |
AWR1843 BOOST | ≥3.75 cm | \ | ≥0.5° | Macro-gestures/7 Micro-gestures/3 | 2D + 3D ResNet18 (Dual-flow) | \ | \ | DTM + RDM/93.70% DTM + DAM + RAM/94.96% DTM + RDM + DAM + RAM /95.63% RTM + DTM + RDM/94.11% RTM + DTM + DAM + RAM /95.22% RTM + DTM + RDM + DAM + RAM 96.04% | [29] |
AWR1642 BOOST | 3.75 cm | 0.2 m/s | ≥0.5° | Macro-gestures/16 | 2D/3D-CNN | \ | 5D feature cubes/99.53% | RTM + DTM/92.47% RTM + DTM + ATM + ETM/98.87% | [40] |
Dataset | Radar | Features | Experimenters/Number | Gestures/Number | Samples of Each Gesture | Total Sample | Reference |
---|---|---|---|---|---|---|---|
Soli | BGT60TR13C | RDM | 10 | 11 | 25 | 2750 | [25] |
Dop-Net | Ancortek radar | DTM | 6 | 4 | \ | 3052 | [69] |
M-Gesture | IWR1443 BOOST | Eigenvalue sequences, RDM, Point Cloud and Raw data | 144 (64 men and 80 women) | 14 | 10/15/30/50 | 56,420 | [70] |
Self-constructed | IWR1642 BOOST | RTM, DTM, ATM | 5 | 10 | 30 | 1500 | [28] |
Self-constructed | AWR1642 BOOST | RDM, RAM | 5 | 8 | 100 | 4000 | [12] |
Self-constructed | AWR1843 BOOST | RTM, DTM, ATM RDM, RAM, DAM | 9 | 6 | 50 | 2700 | [29] |
Self-constructed | AWR1642 BOOST | Feature Cube | 19 | 16 | 65 | 19,760 | [40] |
Self-constructed | BGT60TR13C | Feature Cube | 20 | 12 | 30 | 7200 | [71] |
Self-constructed | AWR1642 BOOST | RDM, RTM, DTM, ATM | 8 + 2 | 7 + 1 | 50 | 4000 | [68] |
Self-constructed | BGT60TR13C | RDM | 9 + 9 + 10 | 20 + 15 + 14 | \ | 3696 + 2788 + 1934 | [72] |
Gestures/Number | Experimenters/Number | Total Sample | Features | Classification Algorithms | Accuracy | Reference |
---|---|---|---|---|---|---|
7 | 5 | 1750 | DTM and the phase spectrum | SVM | 93.84% | [73] |
6 | 2 | 1250 | RTM + DTM + ATM | SVM | 98.48% | [27] |
4 | 2 | 1200 | DTM | HMM | 83.3% | [74] |
10 | 5 | 1050 | RTM | DTW | 91% | [44] |
12 | 10 | 1200 | DTM | DTW | 93.5% | [75] |
10 | 10 | 5000 | DTM | KNN SVM CNN | 88.93% 90.21% 91.34% | [66] |
10 | 10 | 5000 | 3D Feature | CNN CNN + Attention Module | 96.61% 97.17% | [66] |
7 | 10 | 4200 | RDM | RNN CNN 3D-CNN | 90.27% 93.58% 99.06% | [51] |
8 | 5 | 4000 | RAM RDM + RAM | 3D-CNN 3D-CNN (Multi-Channel) | 82.79% 86.95% | [12] |
8 | 10 | 1600 | RDM, RAM | CNN-LSTM | 94.75% | [76] |
6 | 4 | 2400 | RDM | 3D-CNN CNN-LSTM | 95% 97% | [77] |
5 | 9 | 4500 | RTM, DTM, ATM | LSTM CNN-LSTM | 96.7% 99.6% | [31] |
10 | \ | 4000 | RDM | CNN 3D-CNN LSTM I3D I3D + LSTM | 82.77% 88.07% 90.35% 89.37% 93.05% | [78] |
49 | 28 | 8418 | RDM | Transformer | 93.95% | [72] |
6 | 9 | 2700 | RTM, DTM, ATM | VGG-19 ResNeXt101 DenseNet161 | 93.52% 93.33% 92.69% | [29] |
6 | 9 | 2700 | RDM, RAM, DAM | S3D I3D 3-D ResNeXt152 | 95.37% 94.54% 95.19% | [29] |
6 | 9 | 2700 | RTM, DTM, ATM RDM, RAM, DAM | 2D/3D-ResNet18 + Deformable + Attention | 97.52% | [29] |
16 | 19 | 19,760 | 5D Feature cube | S3D S3D + STDC S3D + ASTCAC S3D + STDC + ASTCAC | 98.80% 99.12% 99.01% 99.53% | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Wu, T.; Li, C. Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results. Sensors 2023, 23, 7478. https://doi.org/10.3390/s23177478
Tang G, Wu T, Li C. Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results. Sensors. 2023; 23(17):7478. https://doi.org/10.3390/s23177478
Chicago/Turabian StyleTang, Gaopeng, Tongning Wu, and Congsheng Li. 2023. "Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results" Sensors 23, no. 17: 7478. https://doi.org/10.3390/s23177478
APA StyleTang, G., Wu, T., & Li, C. (2023). Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results. Sensors, 23(17), 7478. https://doi.org/10.3390/s23177478