Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Image-Stitching Methods
2.2. Deep Image-Stitching Methods
3. Proposed Method
3.1. Framework Overview
3.2. Content-Preserving Deep Homography Estimation
3.3. Edge-Assisted Deep Mesh Warping
3.4. Content Consistency Loss and Seam Smoothness Loss
4. Experimental Results and Analysis
4.1. Experimental Setup
4.2. Visual Comparison Evaluation
4.3. Quantitative Comparison Evaluation
4.4. Ablation Studies
4.5. Computational Complexity and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sibilska-Mroziewicz, A.; Hameed, A.; Możaryn, J.; Ordys, A.; Sibilski, K. Analysis of the snake robot kinematics with virtual reality visualisation. Sensors 2023, 23, 3262. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Wan, L.; Feng, W.; Zhang, J.; Wong, T.-T. Cube2video: Navigate between cubic panoramas in real-time. IEEE Trans. Multimed. 2013, 15, 1745–1754. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Yan, J.; Guan, X. Image stitching with positional relationship constraints of feature points and lines. Pattern Recogn. Lett. 2020, 135, 431–440. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, S.; Shi, R.; Yan, W.; Pan, X. Multi-temporal hyperspectral classification of grassland using transformer network. Sensors 2023, 23, 6642. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Lowe, D.G. Recognising panoramas. In Proceedings of the IEEE International Conference on Computer Vision, Nice, France, 14–17 October 2003; pp. 1218–1225. [Google Scholar]
- Brown, M.; Lowe, D.G. Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 2007, 74, 59–73. [Google Scholar] [CrossRef]
- Li, A.; Liu, X.; Gong, W.; Sun, W.; Sun, J. Prelocation image-stitching method based on flexible and precise boresight adjustment using Risley prisms. J. Opt. Soc. Am. A 2019, 36, 305–311. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, H.; Ma, Y.; Yan, Z. Image stitching based on angle-consistent warping. Pattern Recogn. 2021, 117, 107993. [Google Scholar] [CrossRef]
- Wang, G.; Zhai, Z.; Xu, B.; Cheng, Y. A parallel method for aerial image stitching using ORB feature points. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science, Wuhan, China, 24–26 May 2017; pp. 769–773. [Google Scholar]
- Zaragoza, J.; Chin, T.-J.; Tran, Q.-H.; Brown, M.S.; Suter, D. As-projective-as-possible image stitching with moving DLT. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 25–27 June 2013; pp. 2339–2346. [Google Scholar]
- Lin, C.-C.; Pankanti, S.U.; Ramamurthy, K.N.; Aravkin, A.Y. Adaptive as-natural-as-possible image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1155–1163. [Google Scholar]
- Lin, K.; Jiang, N.; Cheong, L.F.; Do, M.; Lu, J. Seagull: Seam-guided local alignment for parallax-tolerant image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Amsterdam, The Netherlands, 11–14 October 2016; pp. 370–385. [Google Scholar]
- Nie, L.; Lin, C.; Liao, K.; Zhao, Y. Learning edge-preserved image stitching from multi-scale deep homography. Neurocomputing 2022, 491, 533–543. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, G.; Kim, S.H. An ECG stitching scheme for driver arrhythmia classification based on deep learning. Sensors 2023, 23, 3257. [Google Scholar] [CrossRef]
- Jong, T.K.; Bong, D.B. An effective feature detection approach for image stitching of near-uniform scenes. Signal Process. Image Commun. 2023, 110, 116872. [Google Scholar] [CrossRef]
- Wen, S.; Wang, X.; Zhang, W.; Wang, G.; Huang, M.; Yu, B. Structure preservation and seam optimization for parallax-tolerant image stitching. IEEE Access 2022, 10, 78713–78725. [Google Scholar] [CrossRef]
- Xiang, T.-Z.; Xia, G.-S.; Bai, X.; Zhang, L. Image stitching by line-guided local warping with global similarity constraint. Pattern Recogn. 2018, 83, 481–497. [Google Scholar] [CrossRef]
- Gao, J.; Kim, S.J.; Brown, M.S. Constructing image panoramas using dual-homography warping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 49–56. [Google Scholar]
- Lin, W.-Y.; Liu, S.; Matsushita, Y.; Ng, T.-T.; Cheong, L.-F. Smoothly varying affine stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 345–352. [Google Scholar]
- Zheng, J.; Wang, Y.; Wang, H.; Li, B.; Hu, H.-M. A novel projective-consistent plane based image-stitching method. IEEE Trans. Multimed. 2019, 21, 2561–2575. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, F. Parallax-tolerant image stitching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3262–3269. [Google Scholar]
- Zhang, Z.; Yang, X.; Xu, C. Natural image stitching with layered warping constraint. IEEE Trans. Multimed. 2021, 25, 329–338. [Google Scholar] [CrossRef]
- Charnotskii, M. Warp and blur imaging model consistent with the three constraints of imaging through refractive turbulence. J. Opt. Soc. Am. A 2022, 39, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Liu, T.; Li, Y.; Miao, X.; He, C. Image stitching by disparity-guided multi-plane alignment. Signal Process. 2022, 197, 108534. [Google Scholar] [CrossRef]
- Truong, P.; Danelljan, M.; Timofte, R. Glu-net: Global-local universal network for dense flow and correspondences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 6257–6267. [Google Scholar]
- Chen, Y.S.; Chuang, Y.Y. Natural image stitching with the global similarity prior. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 186–201. [Google Scholar]
- Li, J.; Wang, Z.; Lai, S.; Zhai, Y.; Zhang, M. Parallax-tolerant image stitching based on robust elastic warping. IEEE Trans. Multimed. 2018, 20, 1672–1687. [Google Scholar] [CrossRef]
- Liao, T.; Li, N. Single-perspective warps in natural image stitching. IEEE T. Image Process. 2020, 29, 724–735. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, Y.-K.; Zhang, F.-L. Content-preserving image stitching with piecewise rectangular boundary constraints. IEEE T. Vis. Comput. Gr. 2021, 27, 3198–3212. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Wang, C.; Liu, S.; Jia, L.; Wang, J.; Cui, Y. Deepmeshflow: Content adaptive mesh deformation for robust image registration. arXiv 2019, arXiv:1912.05131. [Google Scholar]
- Detone, D.; Malisiewicz, T.; Rabinovich, A. Deep image homography estimation. arXiv 2016, arXiv:1606.03798. [Google Scholar]
- Shen, X.; Darmon, F.; Efros, A.A.; Aubry, M. Ransac-flow: Generic two-stage image alignment. In Proceedings of the European Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020; pp. 618–637. [Google Scholar]
- Nguyen, T.; Chen, S.W.; Shivakumar, S.S.; Taylor, C.J.; Kumar, V. Unsupervised deep homography: A fast and robust homography estimation model. IEEE Robot. Autom. Let. 2018, 3, 2346–2353. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Liu, S.; Jia, L.; Wang, J.; Zhou, J. Content-aware unsupervised deep homography estimation. In Proceedings of the European Conference on Computer Vision, Seattle, WA, USA, 13–19 June 2020; pp. 653–669. [Google Scholar]
- Ye, N.; Wang, C.; Fan, H.; Liu, S. Motion basis learning for unsupervised deep homography estimation with subspace projection. In Proceedings of the IEEE International Conference on Computer Vision, Montreal, BC, Canada, 20–25 June 2021; pp. 13097–13105. [Google Scholar]
- Nie, L.; Lin, C.; Liao, K.; Liu, S.; Zhao, Y. Depth-aware multi-grid deep homography estimation with contextual correlation. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 4460–4472. [Google Scholar] [CrossRef]
- Chilukuri, P.K.; Padala, P.; Padala, P.; Desanamukula, V.S.; Pvgd, P.R.L. R-stitch unit: Encoder-decoder-cnn based image-mosaicing mechanism for stitching non-homogeneous image sequences. IEEE Access 2021, 9, 16761–16782. [Google Scholar] [CrossRef]
- Song, D.-Y.; Um, G.-M.; Lee, H.K.; Cho, D. End-to-end image-stitching network via multi-homography estimation. IEEE Signal Proc. Lett. 2021, 28, 763–767. [Google Scholar] [CrossRef]
- Nie, L.; Lin, C.; Liao, K.; Liu, M.; Zhao, Y. A view-free image-stitching network based on global homography. J. Vis. Commun. Image R. 2020, 73, 102950. [Google Scholar] [CrossRef]
- Dai, Q.; Fang, F.; Li, J.; Zhang, G.; Zhou, A. Edge-guided composition network for image stitching. Pattern Recogn. 2021, 118, 108019. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, Y.; Zhu, C.; Yao, C.; Feng, B.; Dai, F. Image stitching via deep homography estimation. Neurocomputing 2021, 450, 219–229. [Google Scholar] [CrossRef]
- Nie, L.; Lin, C.; Liao, K.; Liu, S.; Zhao, Y. Unsupervised deep image stitching: Reconstructing stitched features to images. IEEE Trans. Image Process. 2021, 30, 6184–6197. [Google Scholar] [CrossRef]
- Zamir, S.W.; Arora, A.; Khan, S.H.; Munawar, H.; Khan, F.S.; Yang, M.-H.; Shao, L. Learning enriched features for fast image restoration and enhancement. IEEE Trans. Pattern Anal. 2022, 45, 1934–1948. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.; Sabir, M.; Bovik, A. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006, 15, 3440–3451. [Google Scholar] [CrossRef] [PubMed]
Method | SSIM ↑ | PSNR ↑ |
---|---|---|
APAP method [10] | 0.8245 | 20.0453 |
NISwGSP method [23] | 0.8545 | 20.835 |
REW method [24] | 0.8953 | 22.3405 |
SPSO method [16] | 0.9198 | 24.4924 |
JVCIR method [39] | 0.9153 | 24.5678 |
NC method [41] | 0.9403 | 26.6984 |
The proposed method | 0.9526 | 26.7321 |
Model | SSIM ↑ | PSNR ↑ |
---|---|---|
w/o homography | 0.6437 | 17.394 |
w/o warping | 0.7304 | 17.659 |
w/o content | 0.8045 | 18.3921 |
w/o seam | 0.8593 | 19.0493 |
The proposed method | 0.9153 | 26.7321 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Sun, L.; Zhang, Z.; Liu, S.; Durrani, T.S. Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching. Sensors 2023, 23, 7488. https://doi.org/10.3390/s23177488
Fan X, Sun L, Zhang Z, Liu S, Durrani TS. Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching. Sensors. 2023; 23(17):7488. https://doi.org/10.3390/s23177488
Chicago/Turabian StyleFan, Xiaoting, Long Sun, Zhong Zhang, Shuang Liu, and Tariq S. Durrani. 2023. "Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching" Sensors 23, no. 17: 7488. https://doi.org/10.3390/s23177488
APA StyleFan, X., Sun, L., Zhang, Z., Liu, S., & Durrani, T. S. (2023). Content-Seam-Preserving Multi-Alignment Network for Visual-Sensor-Based Image Stitching. Sensors, 23(17), 7488. https://doi.org/10.3390/s23177488