Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics
Abstract
:1. Introduction
2. Related Work
3. Implementation
3.1. Overview of the Proposed Framework
3.2. Defocus Estimation
4. Experimental Evaluation
4.1. Experimental Setting
4.2. Hardware Implementation
4.3. Obtained Results
4.3.1. Evaluation of the Defocus Blur Estimation in Eye Subimages
- Group #1–10% blur in frame before least blurry image;
- Group #2–5% blur in frame before least blurry image;
- Group #3 least blurry image;
- Group #4–5% blur in frame after least blurry image;
- Group #5–10% blur in frame after least blurry image.
4.3.2. Quantitative Evaluation Using an Extended CASIA-Iris-Distance V4 Database
4.3.3. Evaluation in a Real Scenario
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, K.; Fookes, C.; Jillela, R.; Sridharan, S.; Ross, A. Long range iris recognition: A survey. Pattern Recognit. 2017, 72, 123–143. [Google Scholar] [CrossRef]
- Tan, C.W.; Kumar, A. Accurate Iris Recognition at a Distance Using Stabilized Iris Encoding and Zernike Moments Phase Features. IEEE Trans. Image Process. 2014, 23, 3962–3974. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Beltrán, C.A.; Romero-Garcés, A.; González, M.; Pedraza, A.S.; Rodríguez-Fernández, J.A.; Bandera, A. Real-time embedded eye detection system. Expert Syst. Appl. 2022, 194, 116505. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y.; Mao, J.; Liu, J.; Peng, W.; Chen, N. A Local Metric for Defocus Blur Detection Based on CNN Feature Learning. IEEE Trans. Image Process. 2019, 28, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Un, K.F.; Yu, W.H.; Mak, P.I.; Martins, R.P. An FPGA-Based Energy-Efficient Reconfigurable Convolutional Neural Network Accelerator for Object Recognition Applications. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3143–3147. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Liu, H.; Tian, S.; Deng, Q.; Li, J. An Efficient Task Assignment Framework to Accelerate DPU-Based Convolutional Neural Network Inference on FPGAs. IEEE Access 2020, 8, 83224–83237. [Google Scholar] [CrossRef]
- Wei, C.; Chen, R.; Xin, Q. FPGA Design of Real-Time MDFD System Using High Level Synthesis. IEEE Access 2019, 7, 83664–83672. [Google Scholar] [CrossRef]
- Kerdjidj, O.; Amara, K.; Harizi, F.; Boumridja, H. Implementing Hand Gesture Recognition Using EMG on the Zynq Circuit. IEEE Sens. J. 2023, 23, 10054–10061. [Google Scholar] [CrossRef]
- Javier Toledo-Moreo, F.; Javier Martínez-Alvarez, J.; Garrigós-Guerrero, J.; Manuel Ferrández-Vicente, J. FPGA-based architecture for the real-time computation of 2-D convolution with large kernel size. J. Syst. Archit. 2012, 58, 277–285. [Google Scholar] [CrossRef]
- Karaali, A.; Jung, C.R. Edge-Based Defocus Blur Estimation with Adaptive Scale Selection. IEEE Trans. Image Process. 2018, 27, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Tan, T.; Sun, Z.; Cui, J. Robust and Fast Assessment of Iris Image Quality. In Advances in Biometrics; Zhang, D., Jain, A.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 464–471. [Google Scholar]
- Belcher, C.; Du, Y. A Selective Feature Information Approach for Iris Image-Quality Measure. IEEE Trans. Inf. Forensics Secur. 2008, 3, 572–577. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Tan, T. Comprehensive assessment of iris image quality. In Proceedings of the 2011 18th IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September 2011; pp. 3117–3120. [Google Scholar] [CrossRef]
- Colores, J.M.; García-Vázquez, M.; Ramírez-Acosta, A.; Pérez-Meana, H. Iris Image Evaluation for Non-cooperative Biometric Iris Recognition System. In Advances in Soft Computing; Batyrshin, I., Sidorov, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 499–509. [Google Scholar]
- Zhuo, S.; Sim, T. Defocus map estimation from a single image. Pattern Recognit. 2011, 44, 1852–1858. [Google Scholar] [CrossRef]
- Chen, D.J.; Chen, H.T.; Chang, L.W. Fast defocus map estimation. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3962–3966. [Google Scholar] [CrossRef]
- Ma, H.; Liu, S.; Liao, Q.; Zhang, J.; Xue, J.H. Defocus Image Deblurring Network with Defocus Map Estimation as Auxiliary Task. IEEE Trans. Image Process. 2022, 31, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, F.; Liao, Q. Defocus Map Estimation From a Single Image Based on Two-Parameter Defocus Model. IEEE Trans. Image Process. 2016, 25, 5943–5956. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liao, Q.; Xue, J.H.; Zhou, F. Defocus map estimation from a single image using improved likelihood feature and edge-based basis. Pattern Recognit. 2020, 107, 107485. [Google Scholar] [CrossRef]
- Bertero, M.; Boccacci, P. Introduction to Inverse Problems in Imaging; IOP Publishing: London, UK, 1998. [Google Scholar]
- Oliveira, J.P.; Figueiredo, M.A.T.; Bioucas-Dias, J.M. Parametric Blur Estimation for Blind Restoration of Natural Images: Linear Motion and Out-of-Focus. IEEE Trans. Image Process. 2014, 23, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cohen, S.; Schiller, S.; Milanfar, P. Estimating Spatially Varying Defocus Blur from A Single Image. IEEE Trans. Image Process. 2013, 22, 4879–4891. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Tan, T.; Wang, Y.; Zhang, D. Personal identification based on iris texture analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1519–1533. [Google Scholar] [CrossRef]
- Yan, R.; Shao, L. Blind Image Blur Estimation via Deep Learning. IEEE Trans. Image Process. 2016, 25, 1910–1921. [Google Scholar] [CrossRef]
- Daugman, J. How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 21–30. [Google Scholar] [CrossRef]
- Kalka, N.D.; Zuo, J.; Schmid, N.A.; Cukic, B. Image quality assessment for iris biometric. In Biometric Technology for Human Identification III, Proceedings of the Defense and Security Symposium, Orlando, FL, USA, 17–21 April 2006; Flynn, P.J., Pankanti, S., Eds.; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2006; Volume 6202, p. 62020D. [Google Scholar] [CrossRef]
- Mohammad, K.; Agaian, S. Efficient FPGA implementation of convolution. In Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 3478–3483. [Google Scholar] [CrossRef]
- Sreenivasulu, M.; Meenpal, T. Efficient Hardware Implementation of 2D Convolution on FPGA for Image Processing Application. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Kang, B.J.; Park, K.R. A Study on Iris Image Restoration. In Audio- and Video-Based Biometric Person Authentication; Kanade, T., Jain, A., Ratha, N.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 31–40. [Google Scholar]
- Wan, J.; He, X.; Shi, P. An Iris Image Quality Assessment Method Based on Laplacian of Gaussian Operation. In Proceedings of the IAPR International Workshop on Machine Vision Applications, Tokyo, Japan, 16–18 May 2007. [Google Scholar]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, Kauai, HI, USA, 8–14 December 2001; Volume 1, pp. 511–518. [Google Scholar] [CrossRef]
- Lienhart, R.; Liang, L.; Kuranov, A. A detector tree of boosted classifiers for real-time object detection and tracking. In Proceedings of the 2003 International Conference on Multimedia and Expo. ICME ’03. Proceedings (Cat. No.03TH8698), Baltimore, MD, USA, 6–9 July 2003; Volume 2. [Google Scholar] [CrossRef]
- Dong, W.; Sun, Z.; Tan, T. A Design of Iris Recognition System at a Distance. In Proceedings of the 2009 Chinese Conference on Pattern Recognition, Nanjing, China, 4–6 November 2009; pp. 1–5. [Google Scholar] [CrossRef]
- Yambay, D.; Doyle, J.S.; Bowyer, K.W.; Czajka, A.; Schuckers, S. LivDet-iris 2013—Iris Liveness Detection Competition 2013. In Proceedings of the IEEE International Joint Conference on Biometrics, Clearwater, FL, USA, 29 September–2 October 2014; pp. 1–8. [Google Scholar] [CrossRef]
Name | BRAM_18K | DSP48E | FF | LUT | URAM |
---|---|---|---|---|---|
DSP | – | – | – | – | – |
Expression | – | – | 0 | 2 | – |
FIFO | 0 | – | 65 | 332 | – |
Instance | 2 | 1 | 2606 | 4193 | 1 |
Memory | – | – | – | – | – |
Multiplexer | – | – | – | – | – |
Register | – | – | – | – | – |
Total | 2 | 1 | 2671 | 4527 | 1 |
Available | 256 | 728 | 175,680 | 87,840 | 48 |
Utilisation (%) | 0 | 0 | 1 | 5 | 2 |
Name | BRAM_18K | DSP48E | FF | LUT | URAM |
---|---|---|---|---|---|
Classifier | 81 | 582 | 34,645 | 25,740 | 0 |
Defocus | 2 | 1 | 2671 | 4527 | 1 |
Total | 83 | 583 | 37,316 | 30,267 | 1 |
Available | 256 | 728 | 175,680 | 87,840 | 48 |
Usage (%) | 32 | 80 | 21 | 34 | 2 |
Convolution Kernel | Groups 1–5 | Groups 2–4 | Group 3 | Threshold Value | |||
---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | ||
Daugman [25] | 2284.74 | 952.20 | 7044.57 | 5794.04 | 27,411.10 | 12,113.73 | 14,067.99 |
Wei et al. [11] | 108.70 | 75.61 | 244.81 | 211.72 | 1206.34 | 599.93 | 531.47 |
Kang and Park [29] | 194.31 | 131.00 | 450.28 | 399.91 | 2222.65 | 1132.99 | 969.92 |
Wan et al. [30] | 51.39 | 16.67 | 67.79 | 29.95 | 186.91 | 83.30 | 100.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Beltrán, C.A.; Romero-Garcés, A.; González-García, M.; Marfil, R.; Bandera, A. Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics. Sensors 2023, 23, 7491. https://doi.org/10.3390/s23177491
Ruiz-Beltrán CA, Romero-Garcés A, González-García M, Marfil R, Bandera A. Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics. Sensors. 2023; 23(17):7491. https://doi.org/10.3390/s23177491
Chicago/Turabian StyleRuiz-Beltrán, Camilo A., Adrián Romero-Garcés, Martín González-García, Rebeca Marfil, and Antonio Bandera. 2023. "Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics" Sensors 23, no. 17: 7491. https://doi.org/10.3390/s23177491
APA StyleRuiz-Beltrán, C. A., Romero-Garcés, A., González-García, M., Marfil, R., & Bandera, A. (2023). Real-Time Embedded Eye Image Defocus Estimation for Iris Biometrics. Sensors, 23(17), 7491. https://doi.org/10.3390/s23177491