Non-Contact Face Temperature Measurement by Thermopile-Based Data Fusion
Abstract
:1. Introduction
- measurement of the forehead skin temperature using an infrared (IR) temperature measuring device;
- deployment of a thermal imaging camera at an exposed location for measuring the skin temperature.
2. Materials and Methods
2.1. Thermopile Sensor and Data Readout
2.2. Thermopile Sensor Characterization
2.3. Multimodal Sensor Setup and System Calibration
- capturing the thermopile image It and the camera image Ic;
- converting It and Ic into binary images to remove redundant information;
- detecting the contours of the circular features in It and Ic;
- determining the center points of the circular features, It0, It1, It2, and It3 in It, as well as Ic0, Ic1, Ic2, and Ic3 in Ic;
- spatially sorting the detected center points from It and Ic to ensure correct correspondence;
- calculating the real-valued coefficients a0, a1, a2, b0, b1, and b2 of the transformation matrix based on the centers of the circular features and the linear transformation equations:
2.4. Skin Temperature Measurements and Signal Processing
- capturing the thermopile image It and the camera image Ic;
- determining the transformed image It’ from It. For each point (xt and yt) in It, the following transformation equation applies:
- identifying the forehead landmark points Gc based on Ic (using Face Mesh);
- estimating the temperature data within the area enclosed by Gc using It’;
- spatially averaging the temperature data from It’ within the respective area;
- temporally averaging the temperature data from It’ within the respective area;
- visualization of the fused image with corresponding facial features in Ic.
2.5. Distributed System Architecture and Components
- mobile PC with an integrated touchscreen [25];
- thermopile sensor: Heimann HTPA60 × 40d sensor with ARM Cortex M0 (Pyramid Computer GmbH, Freiburg, Germany);
- binocular camera with two lenses: 2MP AI dual lens camera module (1920 × 1080, RGB and IR camera, Hampo Electronic Technology, Dongguan, China);
- electronic relays which can be connected to further actuators;
- RFID reader;
- edge server system for providing configuration parameters.
3. Results
3.1. Sensor Characteristics
3.2. System Characteristics
3.3. Participant Study and Quantitative Measurement Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Putri, N.K.; Ogi, D. Implementation of PRESENT Algorithm on Contactless Access Control Using Raspberry Pi. In Proceedings of the 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), Jakarta, Indonesia, 16–17 November 2022; pp. 213–218. [Google Scholar] [CrossRef]
- Jadhav, A.; Khadse, V. Real-Time Face Mask Detection and Contactless Body Temperature Measurement on Edge Device Using Deep Learning. In Proceedings of the 2022 4th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 16–17 December 2022; pp. 1111–1116. [Google Scholar] [CrossRef]
- Bhogal, R.K.; Potharaju, S.; Kanagala, C.; Polla, S.; Jampani, R.V.; Yennem, V.B.R. Corona Virus Disinfectant Tunnel Using Face Mask Detection and Temperature Monitoring. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 1704–1709. [Google Scholar] [CrossRef]
- Girinath, N.; Swathi, R.; Swedha, N.; Nisarga, V. Face Mask Detection with Contactless Temperature Using MATLAB. In Proceedings of the 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 20–22 October 2022; pp. 1536–1539. [Google Scholar] [CrossRef]
- Ampex. Soluzioni Tecnologiche per La Misurazione Temperatura Corporea. Available online: http://www.ampex.tn.it/covid-19/brochure_termoscanner.pdf (accessed on 3 September 2023).
- Grupocartroni. Sistema IA de Reconocimiento Facial y Detección de Temperatura. Available online: https://grupocartronic.com/wp-content/uploads/2020/07/Datasheet-Sistema-de-medici%C3%B3n-Infinilink-INF-MBPC-K304.pdf (accessed on 3 September 2023).
- Tyalux. Access Control Dispaly. Available online: https://tyalux.com/access-control-dispaly-8-inch/ (accessed on 3 September 2023).
- ADM Electronic. Corona Zugangskontrolle. Available online: https://www.adm-electronic.de/zutrittskontrolle-corona/ (accessed on 3 September 2023).
- Elotouch. Einfachere Zugangskontrolle Und Besucherverwaltung. Available online: https://www.elotouch.de/elo-access (accessed on 3 September 2023).
- Bhowmik, T.; Mojumder, R.; Banerjee, I.; Das, G.; Bhattacharya, A. IoT Based Non-Contact Portable Thermal Scanner for COVID Patient Screening. In Proceedings of the 2020 IEEE 17th India Council International Conference (INDICON), New Delhi, India, 10–13 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Paramasivam, S.; Shen, C.H.; Zourmand, A.; Ibrahim, A.K.; Alhassan, A.M.; Eltirifl, A.F. Design and Modeling of IoT IR Thermal Temperature Screening and UV Disinfection Sterilization System for Commercial Application Using Blockchain Technology. In Proceedings of the 2020 IEEE 10th International Conference on System Engineering and Technology (ICSET), Shah Alam, Malaysia, 9 November 2020; pp. 250–255. [Google Scholar] [CrossRef]
- Abirami, M.; Saundariya, K.; Senthil Kumaran, R.; Yamuna, I. Contactless Temperature Detection of Multiple People and Detection of Possible Corona Virus Affected Persons Using AI Enabled IR Sensor Camera. In Proceedings of the 2021 Sixth International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, 25–27 March 2021; pp. 166–170. [Google Scholar] [CrossRef]
- Lee, C.M.; Jin, S.P.; Doh, E.J.; Lee, D.H.; Chung, J.H. Regional Variation of Human Skin Surface Temperature. Ann. Dermatol. 2019, 31, 349–352. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Seo, Y.; Quinn, T.; Yorio, P.; Roberge, R. Intersegmental differences in facial warmth sensitivity during rest, passive heat and exercise. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. N. Am. Hyperth. Group 2019, 36, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shoushan, R.; Brook, A. Fused Thermal and RGB Imagery for Robust Detection and Classification of Dynamic Objects in Mixed Datasets via Pre-Trained High-Level CNN. Remote. Sens. 2023, 15, 723. [Google Scholar] [CrossRef]
- Alldieck, T.; Bahnsen, C.H.; Moeslund, T.B. Context-Aware Fusion of RGB and Thermal Imagery for Traffic Monitoring. Sensors 2016, 16, 1947. [Google Scholar] [CrossRef] [PubMed]
- Paziewska, J.; Rzonca, A. Integration of Thermal and RGB Data Obtained by Means of a Drone for Interdisciplinary Inventory. Energies 2022, 15, 4971. [Google Scholar] [CrossRef]
- Tang, H.-F.; Hung, K. Design of a Non-Contact Body Temperature Measurement System for Smart Campus. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics-China (ICCE-China), Guangzhou, China, 19–21 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Moisello, E.; Vaiana, M.; Castagna, M.E.; Bruno, G.; Malcovati, P.; Bonizzoni, E. An Integrated Micromachined Thermopile Sensor with a Chopper Interface Circuit for Contact-Less Temperature Measurements. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 3402–3413. [Google Scholar] [CrossRef]
- Moisello, E.; Malcovati, P.; Bonizzoni, E. Thermal Sensors for Contactless Temperature Measurements, Occupancy Detection, and Automatic Operation of Appliances during the COVID-19 Pandemic: A Review. Micromachines 2021, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.; Stanley, S.A.; Whitman, Z.; Wenn, V.; Coats, T.J.; Sims, M.; Thompson, J.P. The effect of constitutive pigmentation on the measured emissivity of human skin. PLoS ONE 2020, 15, e0241843. [Google Scholar] [CrossRef] [PubMed]
- Sohag, S.A.; Islam, M.K.; Islam, M.B. A Novel Approach for Image Steganography Using Dynamic Substitution and Secret Key. Am. J. Eng. Res. (AJER) 2013, 2, 118–126. Available online: https://www.ajer.org/papers/v2(9)/Q029118126.pdf (accessed on 3 September 2023).
- Al-Fahoum, A.; Harb, B. A Combined Fractal and Wavelet Angiography Image Compression Approach. Open Med. Imaging J. 2013, 7, 9–18. [Google Scholar] [CrossRef]
- Khabarlak, K.; Koriashkina, L. Fast Facial Landmark Detection and Applications: A Survey. J. Comput. Sci. Technol. 2022, 22, e02. [Google Scholar] [CrossRef]
- Faytech. 10.1″ Thermal Temperature Testing PC. Available online: https://www.faytech.com/product/special-products/10-1-thermal-temperature-testing-pc/ (accessed on 3 September 2023).
- Premkumar, S.; Hemanth, D.J. Intelligent Remote Photoplethysmography-Based Methods for Heart Rate Estimation from Face Videos: A Survey. Informatics 2022, 9, 57. [Google Scholar] [CrossRef]
- Kumar, M.; Suliburk, J.W.; Veeraraghavan, A.; Sabharwal, A. PulseCam: A camera-based, motion-robust and highly sensitive blood perfusion imaging modality. Sci. Rep. 2020, 10, 4825. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Flores, H.; Ma, R.; Zhu, L. Extraction of Baseline Blood Perfusion Rates in Mouse Body and Implanted PC3 Tumor Using Infrared Images and Theoretical Simulation. In Proceedings of the Summer Biomechanics, Bioengineering and Biotransport Conference, Virtual, 17–20 June 2020; Available online: http://hdl.handle.net/11603/25295 (accessed on 3 September 2023).
- Singh, M.; Turnbaugh, B.; Ma, R.; Zhu, L. Managing Cooling Penetration and Minimizing Systemic Hypothermia after Surgery Using a Cooling Pad–Whole Body Heat Transfer Simulation. In Proceedings of the Summer Biomechanics, Bioengineering and Biotransport Conference, Virtual, 17–20 June 2020; Available online: http://hdl.handle.net/11603/25296 (accessed on 3 September 2023).
- Caporale, A.; Lombardo, J.; Singh, M.; Zhu, L. Development of an Empirical Correlation to Predict Cooling Penetration into Tissue for Practical Use. In Proceedings of the Summer Biomechanics, Bioengineering and Biotransport Conference, Cambridge, MD, USA, 20–23 June 2022; Available online: http://hdl.handle.net/11603/25595 (accessed on 3 September 2023).
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s), and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Participants | (°C) | (°C) | (°C) | (°C) |
---|---|---|---|---|
1 | 34.06 | 0.174 | 33.64 | 0.116 |
2 | 33.9 | 0.237 | 33.71 | 0.242 |
3 | 35.1 | 0.071 | 34.81 | 0.116 |
4 | 33.82 | 0.133 | 33.83 | 0.074 |
5 | 33.36 | 0.08 | 33.45 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhatti, F.; Engel, G.; Hampel, J.; Khalil, C.; Reber, A.; Kray, S.; Greiner, T. Non-Contact Face Temperature Measurement by Thermopile-Based Data Fusion. Sensors 2023, 23, 7680. https://doi.org/10.3390/s23187680
Bhatti F, Engel G, Hampel J, Khalil C, Reber A, Kray S, Greiner T. Non-Contact Face Temperature Measurement by Thermopile-Based Data Fusion. Sensors. 2023; 23(18):7680. https://doi.org/10.3390/s23187680
Chicago/Turabian StyleBhatti, Faraz, Grischan Engel, Joachim Hampel, Chaimae Khalil, Andreas Reber, Stefan Kray, and Thomas Greiner. 2023. "Non-Contact Face Temperature Measurement by Thermopile-Based Data Fusion" Sensors 23, no. 18: 7680. https://doi.org/10.3390/s23187680
APA StyleBhatti, F., Engel, G., Hampel, J., Khalil, C., Reber, A., Kray, S., & Greiner, T. (2023). Non-Contact Face Temperature Measurement by Thermopile-Based Data Fusion. Sensors, 23(18), 7680. https://doi.org/10.3390/s23187680