Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. Optical System Setup and Database
- a central unit with a cold halogen 100 W light source whose luminosity and white balancing can be adjusted automatically or manually by a control device;
- an optical/digital probe connected to the central unit by a fiber bundle 2 m long;
- a high-resolution color micro-television camera equipped with a high magnification (up to 500×) zoom lens system;
- a high-resolution personal computer with a dedicated graphics card connected to the central unit through a S-video cable;
- a real-time analog to DV converter connecting the central unit to a secondary personal computer used to record images at 120 frames per second with a spatial resolution of 640 × 480 pixels at an 8-bit grayscale.
3.2. Stabilization
Algorithm 1. Pseudocode of Stabilization Algorithm |
Take frame-n and frame-n+1 set hessian_threshold to 1000 #detect keypoints in frame_n and in frame_n+1 while (hessian_threshold > 0) ‘and’ (keypoints in frame_n ‘or’ in frame_n+1 are < 10) detect the keypoints using SURF on the two frames set hessian_threshold to hessian_threshold − 20 #extract descriptors calculate SURF descriptors (feature vectors) from keypoints in frame_n and in frame_n+1 #matching the frame_n and frame_n+1 keypoints matching descriptor vectors using FLANN matcher #check matches number If size of matches < 5 Exit and print “matches are too few” #Search good match calculate min distances between keypoints take the good match if the distance is less than max(2*min_dist, 0.02) # 0.02 is a small arbitrary value in the event that min_dist is very small #check good match number, if too few calculate with a less stringent value If good match keypoints < 5 take the good match if distance is less than max(3*min_dist, 0.03) #check good match number, if too few take the best four match If good match keypoint < 5 take the best 4 match as good match keypoints #discard good match that are clearly out of average calculate movement for every good match calculate mean and standard deviation of movements for every good match if good match movement is out of twice the deviation standard delete good match #motion estimation with good match calculate translation and rotation motion between frame_n and frame_n+1 |
3.3. Signal Enhancement Process
3.4. Capillaries Segmentation U-Net Based
3.4.1. Dataset and Data Preparation
3.4.2. Training
- no preprocessing;
- enhancement;
- stabilization and enhancement.
3.5. Alternative Comparative Techniques
3.5.1. Stabilization
3.5.2. Enhancement
3.5.3. Segmentation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scardina, G.A.; Antonino, C.; Messina, P. Anatomical evaluation of oral microcirculation: Capillary characteristics associated with sex or age group. Ann. Anat.-Anat. Anz. 2009, 191, 371–378. [Google Scholar]
- Scardina, G.A.; Pisano, T.; Cacioppo, A.; Messina, P. Periodontal alteration of the microcirculation and hypercholesterolemia: A possible correlation. South. Med. J. 2011, 104, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Sulli, A.; Smith, V. How to perform and interpret capillaroscopy. Best Pract. Res. Clin. Rheumatol. 2013, 27, 237–248. [Google Scholar] [CrossRef] [PubMed]
- D’oria, M.; Gandin, I.; Riccardo, P.; Hughes, M.; Lepidi, S.; Salton, F.; Confalonieri, P.; Confalonieri, M.; Tavano, S.; Ruaro, B. Correlation between Microvascular Damage and Internal Organ Involvement in Scleroderma: Focus on Lung Damage and Endothelial Dysfunction. Diagnostics 2022, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Smith, V. State of the art on nailfold capillaroscopy: A reliable diagnostic tool and putative biomarker in rheumatology? Rheumatology 2013, 52, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, F.; Cacioppo, A.; Lupaşcu, C.A.; Messina, P.; Scardina, G.; Tegolo, D.; Valenti, C. A non-parametric segmentation methodology for oral videocapillaroscopic images. Comput. Methods Programs Biomed. 2014, 114, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Pakbin, M.; Hejazi, S.M.; Najafizadeh, S.R. Quantitative Nail Fold Capillary Blood Flow Using Capillaroscopy System and ImageJ Software in Healthy Individuals. Front. Biomed. Technol. 2022, 10, 38–46. [Google Scholar] [CrossRef]
- Kim, B.; Hariyani, Y.-S.; Cho, Y.-H.; Park, C. Automated white blood cell counting in nailfold capillary using deep learning segmentation and video stabilization. Sensors 2020, 20, 7101. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.; Herrick, A.L.; Ingegnoli, F.; Damjanov, N.; De Angelis, R.; Denton, C.P.; Distler, O.; Espejo, K.; Foeldvari, I.; Frech, T.; et al. Standardisation of nailfold capillaroscopy for the assessment of patients with Raynaud’s phenomenon and systemic sclerosis. Autoimmun. Rev. 2020, 19, 102458. [Google Scholar] [CrossRef] [PubMed]
- Volkov, M.V.; Margaryants, N.B.; Potemkin, A.V.; Gurov, I.P. The method of compensation for local displacements of images of capillaries in the evaluation of capillary blood flow parameters. J. Phys. Conf. Ser. 2019, 1421, 012054. [Google Scholar] [CrossRef]
- Machikhin, A.S.; Volkov, M.V.; Khokhlov, D.D.; Lovchikova, E.D.; Potemkin, A.V.; Danilycheva, I.V.; Dorofeeva, I.V.; Shulzhenko, A.E. Exoscope-based videocapillaroscopy system for in vivo skin microcirculation imaging of various body areas. Biomed. Opt. Express 2021, 12, 4627–4636. [Google Scholar] [CrossRef]
- Acquaro, A.; Brusca, G.; Casella, S.; Cumbo, E.M.; Della Valle, A.; Karobari, M.I.; Marino, G.; Marya, A.; Messina, P.; Scardina, G.A.; et al. Evaluation of the Oral Microcirculation in Patients Undergoing Anti COVID-19 Vaccination: A Preliminary Study. Vaccines 2022, 10, 1978. [Google Scholar] [CrossRef] [PubMed]
- Niizawa, T.; Yokemura, K.; Kusaka, T.; Sugashi, T.; Miura, I.; Kawagoe, K.; Masamoto, K. Automated capillary flow segmentation and mapping for nailfold video capillaroscopy. Microcirculation 2022, 29, e12753. [Google Scholar] [CrossRef] [PubMed]
- Melsens, K.; Cutolo, M.; Schonenberg-Meinema, D.; Foeldvari, I.; Leone, M.C.; Mostmans, Y.; Badot, V.; Cimaz, R.; Dehoorne, J.; Deschepper, E.; et al. Standardized nailfold capillaroscopy in children with rheumatic diseases: A worldwide study. Rheumatology 2022, 62, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Dan, A.O.; Ștefănescu-Dima, A.; Bălășoiu, A.T.; Puiu, I.; Mocanu, C.L.; Ionescu, M.; Tănasie, A.C.; Târtea, A.E.; Sfredel, V. Early Retinal Microvascular Alterations in Young Type 1 Diabetic Patients without Clinical Retinopathy. Diagnostics 2023, 13, 1648. [Google Scholar] [CrossRef]
- Trombetta, A.C.; Smith, V.; Pizzorni, C.; Meroni, M.; Paolino, S.; Cariti, C.; Ruaro, B.; Sulli, A.; Cutolo, M. Quantitative alterations of capillary diameter have a predictive value for development of the capillaroscopic systemic sclerosis pattern. J. Rheumatol. 2016, 43, 599–606. [Google Scholar] [CrossRef]
- Lambova, S.N. Scleroderma-like capillaroscopic pattern in SLE is not a sign of overlap syndrome in both adults and children. Lupus Sci. Med. 2022, 9, e000749. [Google Scholar] [CrossRef]
- Doshi, N.P.; Schaefer, G.; Zhu, S.Y. An Evaluation of image enhancement techniques for nailfold capillary skeletonisation. Procedia Comput. Sci. 2015, 60, 1613–1621. [Google Scholar] [CrossRef]
- Oharazawa, A.; Ogino, M.; Sugahara, M.; Tanahashi, M. Skin capillary extraction technique based on independent component analysis and Frangi filter using videomicroscopy. Ski. Res. Technol. 2020, 26, 664–670. [Google Scholar] [CrossRef]
- Phuong, H.N.T.; Jeong, H.; Shin, C. Study on Image Processing of Capillaries Using Microscope: Initial Considerations. In Proceedings of the 27th International Workshop on Frontiers of Computer Vision (IW-FCV 2021), Daegu, Republic of Korea, 22–23 February 2021; Volume 27, pp. 157–167. [Google Scholar]
- Nirmala, K.; Naveen, P.; Farazallah, M.; Raj, S.A.K. Study of Microvascular Morphology from Optical Image of Nailfold Capillary using Image Processing Techniques. In Proceedings of the 2022 International Conference on Futuristic Technologies (INCOFT), Belgaum, India, 25–27 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Watanabe, M.; Matsubara, M.; Sanada, T.; Kuroda, H.; Iribe, M.; Furue, M. High speed digital video capillaroscopy: Nailfold capillary shape analysis and red blood cell velocity measurement. J. Biomech. Sci. Eng. 2007, 2, 81–92. [Google Scholar] [CrossRef]
- Chang, C.-H.; Tsai, R.-K.; Wu, W.-C.; Kuo, S.-L.; Yu, H.-S. Use of Dynamic capillaroscopy for studying cutaneous microcirculation in patients with diabetes mellitus. Microvasc. Res. 1997, 53, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Karimov, K.A.; Volkov, M.V. The phase correlation algorithm for stabilization of capillary blood flow video frames. In Videometrics, Range Imaging, and Applications XIII; SPIE: Washington, DC, USA, 2015; Volume 9528, pp. 319–327. [Google Scholar]
- Dobbe, J.G.G.; Streekstra, G.J.; Atasever, B.; van Zijderveld, R.; Ince, C. Measurement of functional microcirculatory geometry and velocity distributions using automated image analysis. Med. Biol. Eng. Comput. 2008, 46, 659–670. [Google Scholar] [CrossRef]
- Lin, W.C.; Wu, C.C.; Huang, T.C.; Lin, W.C.; Chiu, B.Y.C.; Liu, R.S.; Lin, K.P. Red blood cell velocity measurement in rodent tumor model: An in vivo microscopic study. J. Med. Biol. Eng. 2012, 32, 97–102. [Google Scholar] [CrossRef]
- Wang, C. Video Processing for Nail-Fold Capillary Blood Velocity Detection. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2015. [Google Scholar]
- Wu, C.-C.; Zhang, G.; Huang, T.-C.; Lin, K.-P. Red blood cell velocity measurements of complete capillary in finger nail-fold using optical flow estimation. Microvasc. Res. 2009, 78, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Kim, J.; Lee, S.; Kim, E.; Kim, J.; Jung, Y.; Hwang, H. Automatic detection and segmentation of thrombi in abdominal aortic aneurysms using a mask region-based convolutional neural network with optimized loss functions. Sensors 2022, 22, 3643. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zhou, J.; Hu, J.; Chen, N.; Shang, Y.; Chen, Z.; Li, T. Segmenting nailfold capillaries using an improved U-net network. Microvasc. Res. 2020, 130, 104011. [Google Scholar] [CrossRef]
- Liu, R.; Tian, J.; Li, Y.; Chen, N.; Yan, J.; Li, T.; Liu, S. Nailfold Microhemorrhage Segmentation with Modified U-Shape Convolutional Neural Network. Appl. Sci. 2022, 12, 5068. [Google Scholar] [CrossRef]
- Mahmoud, O.; El-Sakka, M.; Janssen, B.G.H. Two-step machine learning method for the rapid analysis of microvascular flow in intravital video microscopy. Sci. Rep. 2021, 11, 10047. [Google Scholar] [CrossRef] [PubMed]
- Tutuncu, K.; Buber, M. Segmentation of Capillaroscopic Images. In Proceedings of the International Conference on Engineering Technologies, Konya, Turkey, 25–27 October 2019. [Google Scholar]
- Spera, E.; Tegolo, D.; Valenti, C. Segmentation and feature extraction in capillaroscopic videos. In Proceedings of the 16th International Conference on Computer Systems and Technologies, Dublin, Ireland, 25–26 June 2015; pp. 244–251. [Google Scholar]
- Tabacchi, M.E.; Tegolo, D.; Cascio, D.; Valenti, C.; Sorce, S.; Gentile, V.; Taormina, V.; Brusca, I.; Magazzu, G.; Giuliano, A.; et al. A Fuzzy-Based Clinical Decision Support System for Coeliac Disease. IEEE Access 2022, 10, 102223–102236. [Google Scholar] [CrossRef]
- Vivona, L.; Cascio, D.; Bruno, S.; Fauci, A.; Taormina, V.; Elgaaied, A.B.; Gorgi, Y.; Triki, R.M.; Ben Ahmed, M.; Yalaoui, S.; et al. Unsupervised clustering method for pattern recognition in IIF images. In Proceedings of the IPAS 2016—2nd International Image Processing, Applications and Systems Conference, Hammamet, Tunisia, 5–7 November 2016. [Google Scholar]
- Iacomi, M.; Cascio, D.; Fauci, F.; Raso, G. Mammographic images segmentation based on chaotic map clustering algorithm. BMC Med. Imaging 2014, 14, 12. [Google Scholar] [CrossRef]
- Roberto e Souza, M.; Maia, H.d.A.; Pedrini, H. Survey on digital video stabilization: Concepts, methods, and challenges. ACM Comput. Surv. 2022, 55, 3494525. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Muja, M.; Lowe, D. Flann, fast library for approximate nearest neighbors. In Proceedings of the International Conference on Computer Vision Theory and Applications 2009, Setúbal, Portugal, 5–8 February 2009; pp. 1–21. [Google Scholar]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 25, 122–125. [Google Scholar]
- Japee, S.A.; Pittman, R.; Ellis, C.G. A New Video Image Analysis System to Study Red Blood Cell Dynamics and Oxygenation in Capillary Networks. Microcirculation 2005, 12, 489–506. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Guizar-Sicairos, M.; Thurman, S.T.; Fienup, J.R. Efficient subpixel image registration algorithms. Opt. Lett. 2008, 33, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Guizar-Sicairos, M. Efficient Subpixel Image Registration by Cross-Correlation. MATLAB Central File Exchange. Available online: https://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation (accessed on 21 August 2023).
- Zuiderveld, K. Contrast limited adaptive histogram equalization. In Graphics Gems IV; Academic Press: Cambridge, MA, USA, 1994; pp. 474–485. [Google Scholar]
- Lo, L.C.; Chiang, J.Y.; Cai, Y.S. Three-dimensional vision-based nail-fold morphological and hemodynamic analysis. In Proceedings of the 2011 IEEE 11th International Conference on Bioinformatics and Bioengineering, Taichung, Taiwan, 24–26 October 2011; pp. 44–51. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Wu, Y.; Kirillov, A.; Massa, F.; Lo, W.Y.; Girshick, R. Detectron2. 2019. Available online: https://github.com/facebookresearch/ (accessed on 17 August 2023).
- Detectron2’s Model Zoo. Available online: https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md (accessed on 17 August 2023).
Configuration | Jaccard Index |
---|---|
No preprocessing | 84.1% |
Enhancement (CLAHE based) | 85.9% |
Enhancement (our method) | 86.8% |
Stabilization + Enhancement (FFT + CLAHE based) | 88.3% |
Stabilization + Enhancement (our methods) | 90.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taormina, V.; Raso, G.; Gentile, V.; Abbene, L.; Buttacavoli, A.; Bonsignore, G.; Valenti, C.; Messina, P.; Scardina, G.A.; Cascio, D. Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors 2023, 23, 7674. https://doi.org/10.3390/s23187674
Taormina V, Raso G, Gentile V, Abbene L, Buttacavoli A, Bonsignore G, Valenti C, Messina P, Scardina GA, Cascio D. Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors. 2023; 23(18):7674. https://doi.org/10.3390/s23187674
Chicago/Turabian StyleTaormina, Vincenzo, Giuseppe Raso, Vito Gentile, Leonardo Abbene, Antonino Buttacavoli, Gaetano Bonsignore, Cesare Valenti, Pietro Messina, Giuseppe Alessandro Scardina, and Donato Cascio. 2023. "Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy" Sensors 23, no. 18: 7674. https://doi.org/10.3390/s23187674
APA StyleTaormina, V., Raso, G., Gentile, V., Abbene, L., Buttacavoli, A., Bonsignore, G., Valenti, C., Messina, P., Scardina, G. A., & Cascio, D. (2023). Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors, 23(18), 7674. https://doi.org/10.3390/s23187674