Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants
Abstract
:1. Introduction
- RQ1: How can the optimization capabilities of PSO be further enhanced for adaptive filters in the context of equalization?
- RQ2: How does the resemblance of PSO with algorithms such as the the least mean squares (LMS) and recursive least squares (RLS) contribute to the understanding and development of adaptive filters?
- RQ3: What are the recent advancements in PSO algorithms, such as ring topology, dynamic multi-swarm PSO, and fully informed PSO, and how do they improve the performance of adaptive filtering?
- RQ4: How does the dynamic neighborhood concept in PSO contribute to better exploration and exploitation of the search space?
- RQ5: What are the benefits and challenges of hybridization techniques, such as hybrid PSO and cooperative PSO, in improving the optimization capabilities of PSO?
- RQ6: What are the time and space complexity considerations of PSO algorithms, and how do they impact the scalability and efficiency of the optimization process?
- RQ7: What are the limitations and challenges of PSO to achieve a better convergence rate?
2. Techniques Used for Adaptive Equalization
2.1. Least-Mean-Squared Error
2.2. Recursive Least Squares
2.3. Particle Swarm Optimization
2.4. Genetic Algorithms
2.5. Deep Learning
3. Particle Swarm Optimization
3.1. Standard PSO Algorithm
3.2. Resemblance of Artificial Intelligence and PSO
3.3. Resemblance with Least Mean Square and Recursive Least Squares
3.4. Applications of PSO
3.5. Time and Space Complexity of PSO
3.6. Recent Advancements in PSO for a Better Convergence Rate
3.6.1. Ring Topology in Particle Swarm Optimization
3.6.2. Dynamic Multi-Swarm Particle Swarm Optimization
3.6.3. Fully Informed Particle Swarm Optimization
3.6.4. Dynamic Neighborhood in Particle Swarm Optimization
3.6.5. Hybridization in Particle Swarm Optimization
3.6.6. Cooperative Particle Swarm Optimization
3.6.7. Self-Organizing Hierarchical Particle Swarm Optimization
3.6.8. Comprehensive Learning Particle Swarm Optimization
4. PSO Techniques for Adaptive Equalization
4.1. Comparative Study of PSO Variants for Adaptive Filtering
4.2. Performance Analysis
5. HPSO: Best-Fit Solution for Adaptive Filtering
5.1. Advantages of HPSO
5.1.1. Exploiting Complementary Techniques
5.1.2. Enhanced Global and Local Search
5.1.3. Adapting to Problem Characteristics
5.1.4. Handling Complex Constraints
5.1.5. Domain-Specific Knowledge Incorporation
5.1.6. Performance Versatility
5.2. Challenges and Limitations of HPSO
5.2.1. Algorithm Complexity
5.2.2. Hybridization Overhead
5.2.3. Algorithm Selection and Tuning
5.2.4. Integration Compatibility
5.2.5. Increased Sensitivity to Problem Characteristics
5.2.6. Limited Generalizability
5.2.7. Increased Development and Maintenance Effort
6. Conclusions and Future Directions
6.1. Conclusions
6.2. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Djaneye-Boundjou, O.S.E. Particle Swarm Optimization Stability Analysis. Doctoral’s Dissertation, University of Dayton, Dayton, OH, USA, 2013. [Google Scholar]
- Shi, Y. Particle swarm optimization. IEEE Connect. 2004, 2, 8–13. [Google Scholar]
- Minasian, A.A.; Bird, T.S. Particle swarm optimization of microstrip antennas for wireless communication systems. IEEE Trans. Antennas Propag. 2013, 61, 6214–6217. [Google Scholar] [CrossRef]
- Banks, A.; Vincent, J.; Anyakoha, C. A review of particle swarm optimization. Part I: Background and development. Nat. Comput. 2007, 6, 467–484. [Google Scholar] [CrossRef]
- Parsopoulos, K.E.; Vrahatis, M.N. Multi-objective particles swarm optimization approaches. In Multi-Objective Optimization in Computational Intelligence: Theory and Practice; IGI Global: Hershey, PA, USA, 2008; pp. 20–42. [Google Scholar]
- Vaseghi, S.V. Advanced Digital Signal Processing and Noise Reduction; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Stojanovic, M.; Catipovic, J.A.; Proakis, J.G. Phase-coherent digital communications for underwater acoustic channels. IEEE J. Ocean. Eng. 1994, 19, 100–111. [Google Scholar] [CrossRef]
- Gustafsson, R. Combating Intersymbol Interference and Cochannel Interference in Wireless Communication Systems. Ph.D. Thesis, Blekinge Institute of Technology, Karlskrona, Sweden, 2003. [Google Scholar]
- Stonick, J.T.; Wei, G.Y.; Sonntag, J.L.; Weinlader, D.K. An adaptive PAM-4 5-Gb/s backplane transceiver in 0.25-μm CMOS. IEEE J. Solid-State Circuits 2003, 38, 436–443. [Google Scholar] [CrossRef]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 21, 1773–1828. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Xu, C.; Chen, X.; Lin, L.; Yu, Y.; Wang, W.; Majumder, A.; Chui, G.; Brown, D.; et al. A 5-Gb/s serial-link redriver with adaptive equalizer and transmitter swing enhancement. IEEE Trans. Circuits Syst. I Regul. Pap. 2013, 61, 1001–1011. [Google Scholar] [CrossRef]
- Qureshi, S.U. Adaptive equalization. Proc. IEEE 1985, 73, 1349–1387. [Google Scholar] [CrossRef]
- Katayama, M. Introduction to robust, reliable, and high-speed power-line communication systems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2001, 84, 2958–2965. [Google Scholar]
- Vahidi, V. Uplink data transmission for high speed trains in severe doubly selective channels of 6G communication systems. Phys. Commun. 2021, 49, 101489. [Google Scholar] [CrossRef]
- Rojo-Álvarez, J.L.; Martínez-Ramón, M.; Munoz-Mari, J.; Camps-Valls, G. Digital Signal Processing with Kernel Methods; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Ali, S.; Saad, W.; Rajatheva, N.; Chang, K.; Steinbach, D.; Sliwa, B.; Wietfeld, C.; Mei, K.; Shiri, H.; Zepernick, H.J.; et al. 6G white paper on machine learning in wireless communication networks. arXiv 2020, arXiv:2004.13875. [Google Scholar]
- Pelekanakis, K.; Chitre, M. Robust equalization of mobile underwater acoustic channels. IEEE J. Ocean. Eng. 2015, 40, 775–784. [Google Scholar] [CrossRef]
- Stojanovic, M.; Beaujean, P.P.J. Acoustic communication. In Springer Handbook of Ocean Engineering; Springer: Berlin/Heidelberg, Germany, 2016; pp. 359–386. [Google Scholar]
- Esmaiel, H.; Jiang, D. Multicarrier communication for underwater acoustic channel. Int’L Commun. Netw. Syst. Sci. 2013, 6, 361. [Google Scholar]
- Arablouei, R.; Doğançay, K. Low-complexity adaptive decision-feedback equalization of MIMO channels. Signal Process. 2012, 92, 1515–1524. [Google Scholar] [CrossRef]
- Lucky, R. Techniques for adaptive equalization of digital communication systems. Bell Syst. Tech. J. 1966, 45, 255–286. [Google Scholar] [CrossRef]
- Dixit, S.; Nagaria, D. LMS adaptive filters for noise cancellation: A review. Int. J. Electr. Comput. Eng. (IJECE) 2017, 7, 2520–2529. [Google Scholar] [CrossRef]
- Bhotto, Z.A.; Antoniou, A. A family of shrinkage adaptive-filtering algorithms. IEEE Trans. Signal Process. 2012, 61, 1689–1697. [Google Scholar] [CrossRef]
- Khan, A.A.; Shah, S.M.; Raja, M.A.Z.; Chaudhary, N.I.; He, Y.; Machado, J.T. Fractional LMS and NLMS algorithms for line echo cancellation. Arab. J. Sci. Eng. 2021, 46, 9385–9398. [Google Scholar] [CrossRef]
- Zhu, Z.; Gao, X.; Cao, L.; Pan, D.; Cai, Y.; Zhu, Y. Analysis on the adaptive filter based on LMS algorithm. Optik 2016, 127, 4698–4704. [Google Scholar] [CrossRef]
- Ao, W.; Xiang, W.Q.; Zhang, Y.P.; Wang, L.; Lv, C.Y.; Wang, Z.H. A new variable step size LMS adaptive filtering algorithm. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 2, pp. 265–268. [Google Scholar]
- Atapattu, L.; Arachchige, G.M.; Ziri-Castro, K.; Suzuki, H.; Jayalath, D. Linear adaptive channel equalization for multiuser MIMO-OFDM systems. In Proceedings of the Australasian Telecommunication Networks and Applications Conference (ATNAC) 2012, Brisbane, QLD, Australia, 7–9 November 2012; pp. 1–5. [Google Scholar]
- Reddy, B.S.; Krishna, V.R. Implementation of Adaptive Filter Based on LMS Algorithm. Int. J. Eng. Res. Technol. 2013, 2, 1–4. [Google Scholar]
- Douglas, S.C. Adaptive filtering. In Digital Signal Processing Fundamentals; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Jaar, F.Y.S. Recursive Inverse Adaptive Filtering for Fading Communication Channels. Master’s Thesis, Eastern Mediterranean University (EMU)-Doğu Akdeniz Üniversitesi (DAÜ), Gazimagusa, Cyprus, 2019. [Google Scholar]
- Khokhar, M.J.; Younis, M.S. Development of the RLS algorithm based on the iterative equation solvers. In Proceedings of the 2012 IEEE 11th International Conference on Signal Processing, Beijing, China, 21–25 October 2012; Volume 1, pp. 272–275. [Google Scholar]
- Zhang, S.; Zhang, J. An RLS algorithm with evolving forgetting factor. In Proceedings of the 2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA), Bengaluru, India, 14–18 September 2015; pp. 24–27. [Google Scholar]
- Claser, R.; Nascimento, V.H.; Zakharov, Y.V. A low-complexity RLS-DCD algorithm for Volterra system identification. In Proceedings of the 2016 24th European Signal Processing Conference (EUSIPCO), Budapest, Hungary, 29 August–2 September 2016; pp. 6–10. [Google Scholar]
- Hakvoort, W.B.; Beijen, M.A. Filtered-error RLS for self-tuning disturbance feedforward control with application to a multi-axis vibration isolator. Mechatronics 2023, 89, 102934. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Bansal, S.; Ali, H.; Singh, S. Performing Adaptive Channel Equalization by Hybrid Differential Evolution Particle Swarm Optimization. Int. Res. Appl. Sci. Eng. Tech. 2014, 2. [Google Scholar]
- Ho, S.; Yang, S.; Ni, G.; Wong, H. A particle swarm optimization method with enhanced global search ability for design optimizations of electromagnetic devices. IEEE Trans. Magn. 2006, 42, 1107–1110. [Google Scholar] [CrossRef]
- Das, S.; Abraham, A.; Konar, A. Particle Swarm Optimization and Differential Evolution Algorithms: Technical Analysis, Applications and Hybridization Perspectives. In Advances of Computational Intelligence in Industrial Systems; Liu, Y., Sun, A., Loh, H.T., Lu, W.F., Lim, E.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–38. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Rao, R.V.; Savsani, V.J. Advanced Optimization Techniques; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Vikhar, P.A. Evolutionary algorithms: A critical review and its future prospects. In Proceedings of the 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), Jalgaon, India, 22–24 December 2016; pp. 261–265. [Google Scholar]
- Qiu, T.; Liu, J.; Si, W.; Wu, D.O. Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks. IEEE/ACM Trans. Netw. 2019, 27, 1028–1042. [Google Scholar] [CrossRef]
- Kundu, D.; Nijhawan, G. Performance analysis of adaptive channel equalizer using LMS, various architecture of ANN and GA. Int. J. Appl. Eng. Res. 2017, 12, 12682–12692. [Google Scholar]
- Xu, W.; Zhong, Z.; Be’ery, Y.; You, X.; Zhang, C. Joint neural network equalizer and decoder. In Proceedings of the 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon, Portugal, 28–31 August 2018; pp. 1–5. [Google Scholar]
- Wu, X.; Huang, Z.; Ji, Y. Deep neural network method for channel estimation in visible light communication. Opt. Commun. 2020, 462, 125272. [Google Scholar] [CrossRef]
- Mathews, A.B.; Mathews, A.B.; Agees Kumar, C. A Non-Linear Improved CNN Equalizer with Batch Gradient Decent in 5G Wireless Optical Communication. IETE J. Res. 2023, 1–13. [Google Scholar] [CrossRef]
- Erpek, T.; O’Shea, T.J.; Sagduyu, Y.E.; Shi, Y.; Clancy, T.C. Deep learning for wireless communications. In Development and Analysis of Deep Learning Architectures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 223–266. [Google Scholar]
- Wang, T.; Wen, C.K.; Wang, H.; Gao, F.; Jiang, T.; Jin, S. Deep learning for wireless physical layer: Opportunities and challenges. China Commun. 2017, 14, 92–111. [Google Scholar] [CrossRef]
- Moradi, R.; Berangi, R.; Minaei, B. A survey of regularization strategies for deep models. Artif. Intell. Rev. 2020, 53, 3947–3986. [Google Scholar] [CrossRef]
- Tripathi, S.; Ikbal, M.A. Optimization of lms algorithm for adaptive filtering using global optimization techniques. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Li, C.; Rahnamayan, S.; Pan, J.S. Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 2013, 223, 119–135. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Pal, S.K.; Rai, C.; Singh, A.P. Comparative study of firefly algorithm and particle swarm optimization for noisy nonlinear optimization problems. Int. J. Intell. Syst. Appl. 2012, 4, 50. [Google Scholar]
- Huang, C.L.; Dun, J.F. A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl. Soft Comput. 2008, 8, 1381–1391. [Google Scholar] [CrossRef]
- Tuppadung, Y.; Kurutach, W. Comparing nonlinear inertia weights and constriction factors in particle swarm optimization. Int. J. Knowl.-Based Intell. Eng. Syst. 2011, 15, 65–70. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), La Jolla, CA, USA, 16–19 July 2000; Volume 1, pp. 84–88. [Google Scholar]
- Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern. 2009, 39, 1362–1381. [Google Scholar] [CrossRef]
- Urade, H.S.; Patel, R. Study and analysis of particle swarm optimization: A review. In Proceedings of the IJCA Proceedings on 2nd National Conference on Information and Communication Technology NCICT (4), 31–33 November 2011; pp. 1–5. [Google Scholar]
- Du, K.L.; Swamy, M.; Du, K.L.; Swamy, M. Particle swarm optimization. In Search and Optimization by Metaheuristics: Techniques and Algorithms Inspired by Nature; IEEE: New York, NY, USA, 2016; pp. 153–173. [Google Scholar]
- Das, S.; Konar, A.; Chakraborty, U.K. Two improved differential evolution schemes for faster global search. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 991–998. [Google Scholar]
- Qin, Q.; Cheng, S.; Zhang, Q.; Li, L.; Shi, Y. Particle swarm optimization with interswarm interactive learning strategy. IEEE Trans. Cybern. 2015, 46, 2238–2251. [Google Scholar] [CrossRef]
- Kuo, R.; Zulvia, F. Automatic clustering using an improved particle swarm optimization. J. Ind. Intell. Inf. 2013, 1, 1–6. [Google Scholar] [CrossRef]
- Ali Ghorbani, M.; Kazempour, R.; Chau, K.W.; Shamshirband, S.; Taherei Ghazvinei, P. Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 724–737. [Google Scholar] [CrossRef]
- Cuevas, E.; Fausto, F.; González, A.; Cuevas, E.; Fausto, F.; González, A. A swarm algorithm inspired by the collective animal behavior. New Advancements in Swarm Algorithms: Operators and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 161–188. [Google Scholar]
- Islam, M.Z.; Sajjad, G.S.; Rahman, M.H.; Dey, A.K.; Biswas, M.A.M.; Hoque, A. Performance comparison of modified LMS and RLS algorithms in de-noising of ECG signals. Int. J. Eng. Technol 2012, 2, 466–468. [Google Scholar]
- Dunjko, V.; Briegel, H.J. Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 2018, 81, 074001. [Google Scholar] [PubMed]
- Variddhisaï, T.; Mandic, D.P. On an RLS-like LMS adaptive filter. In Proceedings of the 2017 22nd International Conference on Digital Signal Processing (DSP), London, UK, 23–25 August 2017; pp. 1–5. [Google Scholar]
- Mahmutoglu, Y.; Turk, K.; Tugcu, E. Particle swarm optimization algorithm based decision feedback equalizer for underwater acoustic communication. In Proceedings of the 2016 39th International Conference on Telecommunications and Signal Processing (TSP), Vienna, Austria, 27–29 June 2016; pp. 153–156. [Google Scholar]
- Xu, J.; Yue, X.; Xin, Z. A real application of extended particle swarm optimizer. In Proceedings of the 2005 5th International Conference on Information Communications & Signal Processing, Bangkok, Thailand, 6–9 December 2005; pp. 46–49. [Google Scholar]
- Arumugam, M.S.; Rao, M. On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Appl. Soft Comput. 2008, 8, 324–336. [Google Scholar] [CrossRef]
- Gad, A.G. Particle swarm optimization algorithm and its applications: A systematic review. Arch. Comput. Methods Eng. 2022, 29, 2531–2561. [Google Scholar] [CrossRef]
- Houssein, E.H.; Gad, A.G.; Hussain, K.; Suganthan, P.N. Major advances in particle swarm optimization: Theory, analysis, and application. Swarm Evol. Comput. 2021, 63, 100868. [Google Scholar] [CrossRef]
- Bonyadi, M. Particle Swarm Optimization: Theoretical ANALYSIS, modifications, and Applications to Constrained Optimization Problems. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 2015. [Google Scholar]
- Mapetu, J.P.B.; Chen, Z.; Kong, L. Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing. Appl. Intell. 2019, 49, 3308–3330. [Google Scholar] [CrossRef]
- Sohail, M.S.; Saeed, M.O.B.; Rizvi, S.Z.; Shoaib, M.; Sheikh, A.U.H. Low-complexity particle swarm optimization for time-critical applications. arXiv 2014, arXiv:1401.0546. [Google Scholar]
- Asif, M.; Khan, M.A.; Abbas, S.; Saleem, M. Analysis of space & time complexity with PSO based synchronous MC-CDMA system. In Proceedings of the 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 30–31 January 2019; pp. 1–5. [Google Scholar]
- Li, X.; Engelbrecht, A.P. Particle swarm optimization: An introduction and its recent developments. In Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, UK, 7–11 July 2007; pp. 3391–3414. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. (Eds.) Particle Swarm Optimization and Intelligence. In Advances and Applications: Advances and Applications; Information Science (IGI): Hershey, PA, USA, 2010. [Google Scholar]
- Du, W.; Li, B. Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 2008, 178, 3096–3109. [Google Scholar] [CrossRef]
- Hu, X.; Shi, Y.; Eberhart, R. Recent advances in particle swarm. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 90–97. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the MHS’95: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Malik, R.F.; Rahman, T.A.; Hashim, S.Z.M.; Ngah, R. New particle swarm optimizer with sigmoid increasing inertia weight. Int. J. Comput. Sci. Secur. 2007, 1, 35–44. [Google Scholar]
- Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimization method for constrained optimization problems. Intell. Technol.-Appl. New Trends Intell. Technol. 2002, 76, 214–220. [Google Scholar]
- Islam, S.M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P.N. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans. Syst. Man Cybern. Part B 2011, 42, 482–500. [Google Scholar] [CrossRef]
- Karpat, Y.; Özel, T. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization. Int. J. Adv. Manuf. Technol. 2007, 35, 234–247. [Google Scholar] [CrossRef]
- Shelokar, P.; Siarry, P.; Jayaraman, V.K.; Kulkarni, B.D. Particle swarm and ant colony algorithms hybridized for improved continuous optimization. Appl. Math. Comput. 2007, 188, 129–142. [Google Scholar] [CrossRef]
- Li, X.; Dam, K.H. Comparing particle swarms for tracking extrema in dynamic environments. In Proceedings of the CEC’03: The 2003 Congress on Evolutionary Computation, Canberra, ACT, Australia, 8–12 December; 2003; Volume 3, pp. 1772–1779. [Google Scholar]
- Rana, S.; Jasola, S.; Kumar, R. A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 2011, 35, 211–222. [Google Scholar] [CrossRef]
- Koh, B.I.; George, A.D.; Haftka, R.T.; Fregly, B.J. Parallel asynchronous particle swarm optimization. Int. J. Numer. Methods Eng. 2006, 67, 578–595. [Google Scholar] [CrossRef]
- Alabi, T.M.; Aghimien, E.I.; Agbajor, F.D.; Yang, Z.; Lu, L.; Adeoye, A.R.; Gopaluni, B. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems. Renew. Energy 2022, 194, 822–849. [Google Scholar] [CrossRef]
- Nepomuceno, F.V.; Engelbrecht, A.P. A self-adaptive heterogeneous pso for real-parameter optimization. In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 361–368. [Google Scholar]
- Gao, H.; Zhang, K.; Yang, J.; Wu, F.; Liu, H. Applying improved particle swarm optimization for dynamic service composition focusing on quality of service evaluations under hybrid networks. Int. J. Distrib. Sens. Netw. 2018, 14, 1550147718761583. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature selection in machine learning: A new perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Samy, M.; Almamlook, R.E.; Elkhouly, H.I.; Barakat, S. Decision-making and optimal design of green energy system based on statistical methods and artificial neural network approaches. Sustain. Cities Soc. 2022, 84, 104015. [Google Scholar] [CrossRef]
- Cherrington, M.; Lu, J.; Xu, Q.; Airehrour, D.; Wade, S. Deep learning for sustainable asset management decision-making. Int. J. COMADEM 2021, 24, 35–41. [Google Scholar]
- Houssein, E.H.; Mahdy, M.A.; Shebl, D.; Manzoor, A.; Sarkar, R.; Mohamed, W.M. An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst. Appl. 2022, 187, 115870. [Google Scholar] [CrossRef]
- Sonti, V.K.; Sundari, G. Artificial Swarm Intelligence—A Paradigm Shift in Prediction, Decision-Making and Diagnosis. In Intelligent Paradigms for Smart Grid and Renewable Energy Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–25. [Google Scholar]
- Lin, A.; Sun, W.; Yu, H.; Wu, G.; Tang, H. Global genetic learning particle swarm optimization with diversity enhancement by ring topology. Swarm Evol. Comput. 2019, 44, 571–583. [Google Scholar] [CrossRef]
- Yue, C.; Qu, B.; Liang, J. A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 2017, 22, 805–817. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xiang, Q.L. Particle swarms with dynamic ring topology. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 419–423. [Google Scholar]
- Pluháček, M.; Kazikova, A.; Kadavy, T.; Viktorin, A.; Senkerik, R. Relation of neighborhood size and diversity loss rate in particle swarm optimization with ring topology. Mendel 2021, 27, 74–79. [Google Scholar] [CrossRef]
- Borowska, B. Genetic learning particle swarm optimization with interlaced ring topology. In Proceedings of the Computational Science–ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, 3–5 June 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 136–148. [Google Scholar]
- Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer. In Proceedings of the SIS 2005: Proceedings 2005 IEEE Swarm Intelligence Symposium, Pasadena, CA, USA, 8–12 June 2005; pp. 124–129. [Google Scholar]
- Li, Z.J.; Liu, X.D.; Duan, X.D. A Particle Swarm Algorithm Based on Stochastic Evolutionary Dynamics. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 7, pp. 564–568. [Google Scholar]
- Tao, X.; Guo, W.; Li, X.; He, Q.; Liu, R.; Zou, J. Fitness peak clustering based dynamic multi-swarm particle swarm optimization with enhanced learning strategy. Expert Syst. Appl. 2022, 191, 116301. [Google Scholar] [CrossRef]
- Xia, X.; Tang, Y.; Wei, B.; Zhang, Y.; Gui, L.; Li, X. Dynamic multi-swarm global particle swarm optimization. Computing 2020, 102, 1587–1626. [Google Scholar] [CrossRef]
- Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer with a novel constraint-handling mechanism. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 9–16. [Google Scholar]
- Ye, W.; Feng, W.; Fan, S. A novel multi-swarm particle swarm optimization with dynamic learning strategy. Appl. Soft Comput. 2017, 61, 832–843. [Google Scholar] [CrossRef]
- Montes de Oca, M.A.; Stützle, T. Convergence behavior of the fully informed particle swarm optimization algorithm. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, Atlanta, GA, USA, 12–16 July 2008; pp. 71–78. [Google Scholar]
- Mansour, E.M.; Ahmadi, A. A novel clustering algorithm based on fully-informed particle swarm. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 713–720. [Google Scholar]
- Cleghorn, C.W.; Engelbrecht, A. Fully informed particle swarm optimizer: Convergence analysis. In Proceedings of the 2015 IEEE Congress on Evolutionary Computation (CEC), Sendai, Japan, 25–28 May 2015; pp. 164–170. [Google Scholar]
- Hu, X.; Eberhart, R. Multiobjective optimization using dynamic neighborhood particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1677–1681. [Google Scholar]
- Zeng, N.; Wang, Z.; Liu, W.; Zhang, H.; Hone, K.; Liu, X. A dynamic neighborhood-based switching particle swarm optimization algorithm. IEEE Trans. Cybern. 2020, 52, 9290–9301. [Google Scholar] [CrossRef]
- Nasir, M.; Das, S.; Maity, D.; Sengupta, S.; Halder, U.; Suganthan, P.N. A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf. Sci. 2012, 209, 16–36. [Google Scholar] [CrossRef]
- Gu, Q.; Wang, Q.; Chen, L.; Li, X.; Li, X. A dynamic neighborhood balancing-based multi-objective particle swarm optimization for multi-modal problems. Expert Syst. Appl. 2022, 205, 117713. [Google Scholar] [CrossRef]
- Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [Google Scholar] [CrossRef]
- Al-Shaikhi, A.A.; Khan, A.H.; Al-Awami, A.T.; Zerguine, A. A hybrid particle swarm optimization technique for adaptive equalization. Arab. J. Sci. Eng. 2019, 44, 2177–2184. [Google Scholar] [CrossRef]
- Grosan, C.; Abraham, A.; Nicoara, M. Search optimization using hybrid particle sub-swarms and evolutionary algorithms. Int. J. Simul. Syst. Sci. Technol. 2005, 6, 60–79. [Google Scholar]
- Esmin, A.A.; Lambert-Torres, G.; De Souza, A.Z. A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 2005, 20, 859–866. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, Z.H.; Lin, S.; Zhang, J.; Luo, X. Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf. Sci. 2015, 293, 370–382. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, X. A multi-swarm self-adaptive and cooperative particle swarm optimization. Eng. Appl. Artif. Intell. 2011, 24, 958–967. [Google Scholar] [CrossRef]
- Jie, J.; Zeng, J.; Han, C.; Wang, Q. Knowledge-based cooperative particle swarm optimization. Appl. Math. Comput. 2008, 205, 861–873. [Google Scholar] [CrossRef]
- Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Syst. Man Cybern. Part B 2005, 35, 1272–1282. [Google Scholar] [CrossRef]
- Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer. In Proceedings of the 2003 Congress on Evolutionary Computation, 2003-CEC’03, Canberra, ACT, Australia, 8–12 December 2003; Volume 2, pp. 770–776. [Google Scholar]
- Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer for dynamic optimization problems. In Proceedings of the Applications of Evolutionary Computing: EvoWorkshops 2004: EvoBIO, EvoCOMNET, EvoHOT, EvoISAP, EvoMUSART, and EvoSTOC, Coimbra, Portugal, 5–7 April 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 513–524. [Google Scholar]
- Janson, S.; Middendorf, M. A hierarchical particle swarm optimizer for noisy and dynamic environments. Genet. Program. Evolvable Mach. 2006, 7, 329–354. [Google Scholar] [CrossRef]
- Chen, J.; Luo, X.; Zhou, M. Hierarchical particle swarm optimization-incorporated latent factor analysis for large-scale incomplete matrices. IEEE Trans. Big Data 2021, 8, 1524–1536. [Google Scholar] [CrossRef]
- Chaturvedi, K.T.; Pandit, M.; Srivastava, L. Self-organizing hierarchical particle swarm optimization for nonconvex economic dispatch. IEEE Trans. Power Syst. 2008, 23, 1079–1087. [Google Scholar] [CrossRef]
- Mahadevan, K.; Kannan, P. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl. Soft Comput. 2010, 10, 641–652. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Li, W.; Zhou, M.; Zhang, Y.; Chaovalitwongse, W.A. Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions. IEEE Trans. Evol. Comput. 2018, 23, 718–731. [Google Scholar] [CrossRef]
- Yogi, S.; Subhashini, K.; Satapathy, J.; Kumar, S. Equalization of digital communication channels based on PSO algorithm. In Proceedings of the 2010 International Conference on Communication Control and Computing Technologies, Nagercoil, India, 7–9 October 2010; pp. 725–730. [Google Scholar]
- Al-Awami, A.T.; Zerguine, A.; Cheded, L.; Zidouri, A.; Saif, W. A new modified particle swarm optimization algorithm for adaptive equalization. Digit. Signal Process. 2011, 21, 195–207. [Google Scholar] [CrossRef]
- Sahu, J.; Majumder, S. A Particle Swarm Optimization based Training Algorithm for MCMA Blind Adaptive Equalizer. In Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 5–7 March 2021; pp. 462–465. [Google Scholar]
- Yogi, S.; Subhashini, K.; Satapathy, J. A PSO based functional link artificial neural network training algorithm for equalization of digital communication channels. In Proceedings of the 2010 5th International Conference on Industrial and Information Systems, Mangalore, India, 29 July–1 August 2010; pp. 107–112. [Google Scholar]
- Wang, J.L.; Zhi, K.; Zhang, R. A PSO-based hybrid adaptive equalization algorithm for asynchronous cooperative communications. Wirel. Pers. Commun. 2019, 109, 2627–2635. [Google Scholar] [CrossRef]
- Jaya, S.; Vinodha, R. Survey on Adaptive Channel Equalization Techniques using Particle Swarm Optimization. Int. J. Sci. Eng. Technol. 2013, 2, 849–852. [Google Scholar]
- Acharya, U.K.; Kumar, S. Particle swarm optimization exponential constriction factor (PSO-ECF) based channel equalization. In Proceedings of the 2019 6th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 13–15 March 2019; pp. 94–97. [Google Scholar]
- Sinha, R.; Choubey, A.; Mahto, S.K.; Ranjan, P. Quantum behaved particle swarm optimization technique applied to FIR-based linear and nonlinear channel equalizer. In Advances in Computer Communication and Computational Sciences: Proceedings of IC4S 2017; Springer: Berlin/Heidelberg, Germany, 2019; Volume 1, pp. 37–50. [Google Scholar]
- Liang, X.; Li, W.; Zhang, Y.; Zhou, M. An adaptive particle swarm optimization method based on clustering. Soft Comput. 2015, 19, 431–448. [Google Scholar] [CrossRef]
- Nagra, A.A.; Han, F.; Ling, Q.H.; Mehta, S. An improved hybrid method combining gravitational search algorithm with dynamic multi swarm particle swarm optimization. IEEE Access 2019, 7, 50388–50399. [Google Scholar] [CrossRef]
- Mason, K.; Duggan, J.; Howley, E. Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants. Neurocomputing 2017, 270, 188–197. [Google Scholar] [CrossRef]
- Jain, N.; Nangia, U.; Jain, J. A review of particle swarm optimization. J. Inst. Eng. 2018, 99, 407–411. [Google Scholar] [CrossRef]
- Li, W.; Meng, X.; Huang, Y.; Fu, Z.H. Multipopulation cooperative particle swarm optimization with a mixed mutation strategy. Inf. Sci. 2020, 529, 179–196. [Google Scholar] [CrossRef]
- Phuangpornpitak, N.; Tia, S. Optimal photovoltaic placement by self-organizing hierarchical binary particle swarm optimization in distribution systems. Energy Procedia 2016, 89, 69–77. [Google Scholar] [CrossRef]
- Gülcü, Ş.; Kodaz, H. A novel parallel multi-swarm algorithm based on comprehensive learning particle swarm optimization. Eng. Appl. Artif. Intell. 2015, 45, 33–45. [Google Scholar] [CrossRef]
Technique | Limitations | Advantages |
---|---|---|
LMS |
| |
RLS |
|
|
PSO |
|
|
GA |
|
|
Deep Learning |
|
|
Year | Advancement |
---|---|
1995 | Introduction of PSO algorithm by Kennedy and Eberhart [1,82] |
1997 | Inclusion of inertia weight to balance exploration and exploitation [83] |
1998 | Exploration of PSO variants such as constriction factor approach [84] |
1999 | Incorporation of adaptive parameter settings for improved performance [85] |
2001 | Multi-objective PSO developed for handling optimization problems with multiple conflicting objectives [86] |
2003 | Hybridization of PSO with other metaheuristic or local search algorithms [87] |
2004 | Introduction of dynamic PSO variants to adapt to changing environments [88] |
2006 | Application of PSO in solving complex real-world problems, such as the optimization of neural networks and data clustering [89] |
2008 | Development of parallel and distributed PSO algorithms for enhanced computational efficiency [90] |
2010 | Integration of PSO with machine learning techniques for improved optimization and prediction tasks [91] |
2012 | Self-adaptive PSO algorithms introduced to dynamically adjust algorithm parameters during optimization [92] |
2014 | Improved PSO variants focusing on handling dynamic and uncertain environments [93] |
2016 | Application of PSO in feature selection, image processing, and bioinformatics problems [94] |
2018 | Exploration of hybrid PSO algorithms with deep learning models for enhanced optimization and decision-making [95,96] |
2020 | Advancements in multi-objective PSO algorithms for solving complex optimization problems with conflicting objectives [97] |
2022 | Development of PSO variants incorporating social-network-inspired behaviors for collective decision-making and coordination [98] |
Topic | Advantages | Limitations |
---|---|---|
Ring Topology |
|
|
Dynamic Multi-Swarm |
| |
Fully Informed |
|
|
Dynamic Neighborhood |
|
|
Hybridization |
|
|
Cooperative Particle Swarm |
|
|
Self-Organizing Hierarchical |
|
|
Comprehensive Learning |
|
|
Number of Iterations | MSE (dB) N = 10 | MSE (dB) N = 20 | MSE (dB) N = 40 | MSE (dB) N = 60 |
---|---|---|---|---|
0 | 20 | 20 | 20 | 20 |
50 | −12 | −15 | −28 | −29 |
100 | −20 | −23 | −29 | −30 |
200 | −21 | −25 | −29.5 | −30 |
300 | −19.5 | −24.5 | −29 | −30.5 |
400 | −20.5 | −25 | −29.5 | −31 |
500 | −22 | −26 | −30 | −31 |
SNR | LMS | PSO VCF | HPSO |
---|---|---|---|
0 | 0.8922 | 0.8929 | 0.8929 |
2 | 0.8017 | 0.8019 | 0.8019 |
4 | 0.8402 | 0.8402 | 0.8402 |
6 | 0.8051 | 0.805 | 0.805131 |
8 | 0.74283 | 0.7428 | 0.7427 |
10 | 0.65015 | 0.6505 | 0.6505 |
12 | 0.5526 | 0.5527 | 0.5527 |
14 | 0.4026 | 0.4026 | 0.4026 |
f(x) | fl | f2 | ||||
---|---|---|---|---|---|---|
Value | Mean | Iterations | Comp | Mean | Iterations | Comp |
PSO | 7.1e−2 | 500 | 100% | 55.44 | 500 | 100% |
PSO-D | 5.706e−53 | 500 | 100% | 0 | 264 | 100% |
PSO-DE | 6.35e−20 | 412 | 70.3% | 293 | 66.90% | |
DMS | 0.71 (2%) | 500 | 100% | 37.97 | 500 | 100% |
DIMS-D | 3.646e−54 | 500 | 100% | 0 | 273 | 100% |
DAIS-DE | 3.85e−20 | 392 | 69.88% | 0 | 320 | 66.48% |
CL | 1.056e−47 | 500 | 60% | 0 | 312 | 60% |
CL-D | 3.486e−51 | 500 | 60% | 0 | 279 | 60% |
CEDE | 7.19e−19 | 319 | 39.2% | 0 | 258 | 37.63% |
HP | 1.0486e−5 | 50 | 80% | 29.56 | 500 | 80% |
HP-D | 4.906e−111 | 500 | 80% | 0 | 87 | 80% |
HP-DE2 | 5.216e−15 | 55 | 3.99% | 1.18e−13 | 227 | 12.80% |
f(x) | fl | f2 | ||||
---|---|---|---|---|---|---|
Value | Mean | Iterations | Comp | Mean | Iterations | Com |
PSO | x | x | x | 150.12 (98%) | 500 | 100% |
PSO-D | 1.266e−53 | 500 | 100% | 0 | 273 | 100% |
PSO-DE | 1.46e−19 | 446 | 70.29% | 0 | 291 | 66.94% |
DMS | x | x | x | 164.86 (62%) | 500 | 100% |
DMS-D | 1.616e−54 | 500 | 100% | 0.00% | 269 | 100% |
DMS-DE | 9.58e−20 | 420 | 69.90% | 0% | 304 | 66.49% |
CL | 6.546e−44 | 500 | 60% | 115% | 500 | 60% |
CL-D | 52 | 500 | 60% | 0.00% | 275 | 60% |
CEDE | 1.42e−18 | 310 | 39.19% | 0% | 259 | 37.59% |
HP | 0.16 | 500 | 80% | 6905% | 500 | 80% |
HP-D | 6.566e−106 | 500 | 80% | 0.00% | 92 | 80% |
HP-DE2 | 9.9e−15 | 3.98% | 1.52e−228 | 228 | 12.78% |
No.of Dimensions | PSO | DPSO | CPSO | HPSO |
---|---|---|---|---|
10 | −185.37 | −156.31 | −300 | −50.10100664 |
20 | −81.951 | −60.194 | −296.087 | −33.131 |
30 | −48.781 | −32.039 | −281.737 | −30.1019 |
40 | −31.22 | −19.417 | −45.652 | −27.6767 |
50 | −18.537 | −7.767 | −3.9130 | −26.4646 |
60 | −18.537 | −3.8835 | −1.396 | −26.2623 |
70 | −13.659 | −1.9418 | −2.6628 | −24.8481 |
80 | −7.8049 | −3.8835 | −3.9138 | −24.2424 |
90 | −6.8293 | 0 | −5.2173 | −24.040 |
100 | −4.878 | 0 | 0 | −22.4242 |
SNR | LMS | PSO-CCF | PSO-VCF | HPSO |
---|---|---|---|---|
0 | −0.0515 | 1.4433 | 5.051546 | 5.15464 |
50 | −5.2062 | −11.289 | −13.9691 | −18.0928 |
100 | −8.6082 | −11.753 | −14.3299 | −18.0928 |
150 | −10.876 | −11.907 | −14.1237 | −18.4021 |
200 | −12.68 | −11.598 | −14.1237 | −18.4536 |
250 | −13.66 | −11.804 | −14.2268 | −18.7113 |
300 | −14.794 | −11.804 | −14.1237 | −18.6598 |
350 | −14.897 | −11.959 | −14.1237 | −18.6598 |
400 | −14.794 | −11.753 | −14.1753 | −18.6598 |
450 | −14.794 | −11.753 | −13.9691 | −18.6082 |
500 | −14.948 | −11.959 | −14.3814 | −18.4021 |
SNR | LMS | PSO-CCF | PSO-VCF | HPSO |
---|---|---|---|---|
0 | −0.06568 | 4.9835 | 5.02463 | 12.2088 |
50 | −2.159 | −4.41707 | −5.6075 | −8.31691 |
100 | −3.2676 | −4.499 | −5.8928 | −8.6452 |
150 | −3.6319 | −4.622 | −5.894 | −8.6042 |
200 | −3.9244 | −4.4589 | −5.8535 | −8.6863 |
250 | −4.1297 | −4.4170 | −5.93592 | −8.6065 |
300 | −4.70443 | −4.41785 | −5.85384 | −8.6042 |
350 | −4.8275 | −4.2939 | −5.89628 | −8.76025 |
400 | −4.78296 | −4.2527 | −5.77185 | −8.604 |
450 | −4.786296 | −4.37602 | −5.689 | −8.8095 |
500 | −4.745 | −4.25287 | −5.6077 | −8.6863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Shafi, I.; Khawaja, S.G.; de la Torre Díez, I.; Flores, M.A.L.; Galvlán, J.C.; Ashraf, I. Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants. Sensors 2023, 23, 7710. https://doi.org/10.3390/s23187710
Khan A, Shafi I, Khawaja SG, de la Torre Díez I, Flores MAL, Galvlán JC, Ashraf I. Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants. Sensors. 2023; 23(18):7710. https://doi.org/10.3390/s23187710
Chicago/Turabian StyleKhan, Arooj, Imran Shafi, Sajid Gul Khawaja, Isabel de la Torre Díez, Miguel Angel López Flores, Juan Castañedo Galvlán, and Imran Ashraf. 2023. "Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants" Sensors 23, no. 18: 7710. https://doi.org/10.3390/s23187710
APA StyleKhan, A., Shafi, I., Khawaja, S. G., de la Torre Díez, I., Flores, M. A. L., Galvlán, J. C., & Ashraf, I. (2023). Adaptive Filtering: Issues, Challenges, and Best-Fit Solutions Using Particle Swarm Optimization Variants. Sensors, 23(18), 7710. https://doi.org/10.3390/s23187710