Enhanced Pelican Optimization Algorithm for Cluster Head Selection in Heterogeneous Wireless Sensor Networks
Abstract
:1. Introduction
- The logistic-sine chaotic mapping method is employed to improve the initialization of random solutions, allowing for the generation of uniformly distributed and non-repetitive initial solution sets.
- The levy flight algorithm is utilized to enhance global optimization capability and enrich the population diversity of the EPOA algorithm.
- For the selection of the optimal cluster head set, the fitness function includes the distance and energy use of the wireless sensor network.
2. Related Works
3. Pelican Optimization Algorithm
- (i)
- Approaching prey while in the exploring phase.
- (ii)
- Winging on the water surface (exploitation phase).
4. Proposed Algorithm
4.1. Heterogeneous Network Energy Dissipation Model
4.2. Enhanced POA Algorithm
4.3. Mechanism of EPOA-CHS Algorithm
4.4. Epoa-Chs Pseudocode
Algorithm 1 EPOA pseudo-code |
|
5. Results and Discussion
5.1. Simulation Settings
5.2. Residual Energy
5.3. Network Lifetime
5.4. Alive Nodes Number
5.5. Packet Delivery
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arampatzis, T.; Lygeros, J.; Manesis, S. A Survey of Applications of Wireless Sensors and Wireless Sensor Networks. In Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, Limassol, Cyprus, 27–29 June 2005; p. 719. [Google Scholar]
- Zhang, S.; Zhang, H. A Review of Wireless Sensor Networks and Its Applications. In Proceedings of the IEEE International Conference on Automation and Logistics, Zhengzhou, China, 15–17 August 2012. [Google Scholar]
- Gulati, K.; Boddu, R.S.K.; Kapila, D.; Bangare, S.L.; Chandnani, N.; Saravanan, G. A review paper on wireless sensor network techniques in Internet of Things (IoT). Mater. Today Proc. 2021, 51, 161–165. [Google Scholar] [CrossRef]
- Kandris, D.; Nakas, C.; Vomvas, D.; Koulouras, G. Applications of wireless sensor networks: An up-to-date survey. Appl. Syst. Innov. 2020, 3, 14. [Google Scholar] [CrossRef]
- Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of wireless sensor networks and internet of things frameworks in the industry revolution 4.0: A systematic literature review. Sensors 2022, 22, 2087. [Google Scholar] [CrossRef] [PubMed]
- Elsmany, E.F.A.; Omar, M.A.; Wan, T.-C.; Altahir, A.A. EESRA: Energy Efficient Scalable Routing Algorithm for Wireless Sensor Networks. IEEE Access 2019, 7, 96974–96983. [Google Scholar] [CrossRef]
- Sambo, D.W.; Yenke, B.O.; Forster, A.; Dayang, P. Optimized clustering algorithms for large wireless sensor networks: A review. Sensors 2019, 19, 322. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Li, G.; Xu, R.; Su, J.; Li, J.; Wen, G. Clustering the Wireless Sensor Networks: A MetaHeuristic Approach. IEEE Access 2020, 8, 214551–214564. [Google Scholar] [CrossRef]
- Boyinbode, O.; Le, H.; Mbogho, A.; Takizawa, M.; Poliah, R. A survey on clustering algorithms for wireless sensor networks. In Proceedings of the 13th International Conference on Network-Based Information Systems (NBiS), Takayama, Japan, 14–16 September 2010; pp. 358–364. [Google Scholar]
- Zivkovic, M.; Bacanin, N.; Zivkovic, T.; Strumberger, I.; Tuba, E.; Tuba, M. Enhanced grey wolf algorithm for energy efcient wireless sensor networks. In Proceedings of the f2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 26–27 May 2020; IEEE: Manhattan, NY, USA, 2020; pp. 87–92. [Google Scholar]
- Karthick, P.T.; Palanisamy, C. Optimized cluster head selection using krill herd algorithm for wireless sensor network. Automatika 2019, 60, 340–348. [Google Scholar] [CrossRef]
- Katiyar, V.; Ch, N.; Soni, S. A survey on clustering algorithms for heterogeneous wireless sensor networks. Int. J. Adv. Netw. 2011, 2, 745–754. [Google Scholar]
- Chauhan, S.; Singh, M.; Aggarwal, A.K. Cluster Head Selection in Heterogeneous Wireless Sensor Network Using a New Evolutionary Algorithm; Wireless Personal Communications; Springer: New York, NY, USA, 2021. [Google Scholar]
- Smaragdakis, G.; Matta, I.; Bestavros, A. SEP: A Stable Election Protocol for clustered heterogeneous wireless sensor networks. In Proceedings of the Second International Workshop on Sensor and Actor Network Protocols and Applications (SANPA 2004), Boston, MA, USA, 22 August 2004. [Google Scholar]
- Qing, L.; Zhu, Q.; Wang, M. Design of a Distributed Energyefficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks; Computer Communications 29; Elsevier: Amsterdam, The Netherlands, 2006; pp. 2230–2237. [Google Scholar]
- Faisal, S.; Javaid, N.; Javaid, A.; Khan, M.A.; Bouk, S.H.; Khan, Z.A. Z-SEP: Zonal-stable election protocol for wireless sensor networks. arXiv 2013, arXiv:1303.5364. [Google Scholar]
- Al-Aboody, N.A.; Al-Raweshidy, H.S. Grey wolf optimization-based energy-efficient routing protocol for heterogeneous wireless sensor networks. In Proceedings of the 2016 4th International Symposium on Computational and Business Intelligence (ISCBI), Olten, Switzerland, 5–7 September 2016; IEEE: Manhattan, NY, USA, 2016; pp. 101–107. [Google Scholar]
- Bhushan, S.; Antoshchuk, S. A hybrid approach to energy efficient clustering for heterogeneous wireless sensor network. J. Technol. Des. Electron. Appar. 2018, 2, 15–20. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, W.; Sangaiah, A.K.; Kim, H.-J. An Improved Routing Schema with Special Clustering Using PSO Algorithm for Heterogeneous Wireless Sensor Network. Sensors 2019, 19, 671. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.M.; Amgoth, T.; Pandey, H.M. Particle swarm optimization based energy efficient clustering and sink mobility in heterogeneous wireless sensor network. Ad. Hoc. Netw. 2020, 106, 102237. [Google Scholar] [CrossRef]
- Zhao, X.; Ren, S.; Quan, H.; Gao, Q. Routing Protocol for Heterogeneous Wireless Sensor Networks Based on a Modified Grey Wolf Optimizer. Sensors 2020, 20, 820. [Google Scholar] [CrossRef] [PubMed]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef] [PubMed]
- Mantri, D.; Prasad, N.R.; Prasad, R. Grouping of clusters for efficient data aggregation (GCEDA) in wireless sensor network. In Proceedings of the 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, India, 22–23 February 2013; IEEE: Manhattan, NY, USA, 2013; pp. 132–137. [Google Scholar]
- Sajwan, M.; Gosain, D.; Sharma, A.K. CAMP: Cluster aided multi-path routing protocol for wireless sensor networks. Wirel. Netw. 2019, 25, 2603–2620. [Google Scholar] [CrossRef]
- Elbhiri, B.; Saadane, R.; Aboutajdine, D. Developed Distributed Energy-Efficient Clustering (DDEEC) for heterogeneous wireless sensor networks. In Proceedings of the 2010 5th International Symposium On I/V Communications and Mobile Network, Rabat, Morocco, 30 September–2 October 2010; pp. 1–4. [Google Scholar]
- Dattatraya, K.N.; Rao, K.R. Maximising network lifetime and energy efficiency of wireless sensor network using group search Ant Lion with Levy Flight. IET Commun. 2020, 14, 914–922. [Google Scholar]
Parameters | Value |
---|---|
Network Field | (100,100) |
Number of nodes | 100 |
0.5 J | |
Packet Size | 4000 Bits |
50 nJ/bit | |
10 nJ/bit/m | |
0.0013 pJ/bit/m | |
5 nJ/bit/signal | |
70 m | |
0.1 | |
Fraction of the | m = 0, m = 0.1, |
advanced nodes | m = 0.2, m = 0.3 |
Times more energy | |
than normal nodes |
No. of Rounds | |||||
---|---|---|---|---|---|
Cases for Heterogeneity | Protocol | FND | HND | MND | LND |
SEP | 840 | 1158 | 1232 | 1837 | |
DEEC | 926 | 1216 | 1321 | 1888 | |
Z-SEP | 595 | 1498 | 1724 | 2266 | |
m = 0, α = 0 | PSO-ECSM | 1763 | 2139 | 2285 | 2384 |
EPOA-CHS | 2910 | 2417 | 2442 | 2484 | |
SEP | 1116 | 1302 | 1372 | 5383 | |
DEEC | 1030 | 1259 | 1361 | 5341 | |
Z-SEP | 1168 | 1923 | 2086 | 6450 | |
PSO-ECSM | 1825 | 2212 | 2316 | 7055 | |
m = 0.1, α = 2 | EPOA-CHS | 2233 | 2441 | 2452 | 7373 |
SEP | 1291 | 1486 | 1676 | 3888 | |
DEEC | 969 | 1274 | 1699 | 4165 | |
Z-SEP | 1103 | 2055 | 2256 | 5638 | |
PSO-ECSM | 1846 | 2269 | 2402 | 5989 | |
m = 0.2, α = 3 | EPOA-CHS | 2243 | 2445 | 2482 | 6198 |
SEP | 1312 | 1491 | 1652 | 7480 | |
DEEC | 1014 | 1243 | 1448 | 8088 | |
Z-SEP | 1168 | 1951 | 2125 | 8677 | |
m = 0.3, α = 1.5 | PSO-ECSM | 1842 | 2253 | 2340 | 9436 |
EPOA-CHS | 2233 | 2443 | 2458 | 9856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Duan, J.; Xu, H.; Song, X.; Yang, Y. Enhanced Pelican Optimization Algorithm for Cluster Head Selection in Heterogeneous Wireless Sensor Networks. Sensors 2023, 23, 7711. https://doi.org/10.3390/s23187711
Wang Z, Duan J, Xu H, Song X, Yang Y. Enhanced Pelican Optimization Algorithm for Cluster Head Selection in Heterogeneous Wireless Sensor Networks. Sensors. 2023; 23(18):7711. https://doi.org/10.3390/s23187711
Chicago/Turabian StyleWang, Zhen, Jin Duan, Haobo Xu, Xue Song, and Yang Yang. 2023. "Enhanced Pelican Optimization Algorithm for Cluster Head Selection in Heterogeneous Wireless Sensor Networks" Sensors 23, no. 18: 7711. https://doi.org/10.3390/s23187711
APA StyleWang, Z., Duan, J., Xu, H., Song, X., & Yang, Y. (2023). Enhanced Pelican Optimization Algorithm for Cluster Head Selection in Heterogeneous Wireless Sensor Networks. Sensors, 23(18), 7711. https://doi.org/10.3390/s23187711