Multi-Source Soil Moisture Data Fusion Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation in the Western U.S.
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Satellite/Model-Based Products
2.2.2. In Situ Soil Moisture
2.2.3. Auxiliary Products
3. Methods and Evaluation Metrics
3.1. Spherical Cap Harmonic Analysis
3.2. Helmert Variance Component Estimation
- (a)
- Estimate the prior weights of different observed values, namely, determine the initial weight value for each type of observation. The initial values of are set to 1 (i.e., equal weights);
- (b)
- Conduct an adjustment for the first time, and obtain according to Equations (11) and (12);
- (c)
- Following Equation (13), obtain the unit weight variance of various observations for the first time, and then determine the weights according to the following equation:
- (d)
- Steps (b)–(c) are repeated until the unit weight variances of various observations are almost equal.
3.3. Evaluation Metrics
4. Results
- (a)
- Expand 0.5° around the in situ sites and calculate the average bias between the SM estimates for the products and the in situ measurements in the area (sites without SM estimates are not involved in the calculation).
- (b)
- Calculate the mean bias for all sites and take it as the daily global bias for the products.
- (c)
- Using the calculated bias to calibrate the SM estimates of the product.
4.1. Products Comparison under Various Climate
4.2. Comparison between Products and Validation Sites
4.3. SM Maps Comparison
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, H.; Zeng, J.; Chen, N.; Zhang, X.; Cosh, M.H.; Wang, W. Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sens. Environ. 2019, 231, 111215. [Google Scholar] [CrossRef]
- Humphrey, V.; Berg, A.; Ciais, P.; Gentine, P.; Jung, M.; Reichstein, M.; Seneviratne, S.I.; Frankenberg, C. Soil moisture-atmosphere feedback dominates land carbon uptake variability. Nature 2021, 592, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Ciais, P.; Prentice, I.C.; Gentine, P.; Makowski, D.; Bastos, A.; Luo, X.; Green, J.K.; Stoy, P.C.; Yang, H.; et al. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat. Commun. 2022, 13, 989. [Google Scholar] [CrossRef] [PubMed]
- Jalilvand, E.; Abolafia-Rosenzweig, R.; Tajrishy, M.; Das, N. Evaluation of SMAP/Sentinel 1 High-Resolution Soil Moisture Data to Detect Irrigation Over Agricultural Domain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10733–10747. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Niyogi, D. Assessing Crop Water Stress Index of Citrus Using In-Situ Measurements, Landsat, and Sentinel-2 Data. Int. J. Remote Sens. 2020, 42, 1893–1916. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Bazrafshan, O.; Mahdavi, R.; Sardooi, E.R.; Jamshidi, S. Modeling Future Hydrological Characteristics Based on Land Use/Land Cover and Climate Changes Using the SWAT Model. Water Resour. Manag. 2023, 37, 4177–4194. [Google Scholar] [CrossRef]
- Nicolai-Shaw, N.; Zscheischler, J.; Hirschi, M.; Gudmundsson, L.; Seneviratne, S.I. A drought event composite analysis using satellite remote-sensing based soil moisture. Remote Sens. Environ. 2017, 203, 216–225. [Google Scholar] [CrossRef]
- Enenkel, M.; Steiner, C.; Mistelbauer, T.; Dorigo, W.; Wagner, W.; See, L.; Atzberger, C.; Schneider, S.; Rogenhofer, E. A Combined Satellite-Derived Drought Indicator to Support Humanitarian Aid Organizations. Remote Sens. 2016, 8, 340. [Google Scholar] [CrossRef]
- Gu, X.; Jamshidi, S.; Sun, H.; Niyogi, D. Identifying multivariate controls of soil moisture variations using multiple wavelet coherence in the U.S. Midwest. J. Hydrol. 2021, 602, 126755. [Google Scholar] [CrossRef]
- Beck, H.E.; Pan, M.; Miralles, D.G.; Reichle, R.H.; Dorigo, W.A.; Hahn, S.; Sheffield, J.; Karthikeyan, L.; Balsamo, G.; Parinussa, R.M.; et al. Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrol. Earth Syst. Sci. 2020, 25, 17–40. [Google Scholar] [CrossRef]
- Jones, L.A.; Kimball, J.S.; Reichle, R.H.; Madani, N.; Glassy, J.; Ardizzone, J.V.; Ardizzone, J.V.; Colliander, A.; Cleverly, J.; Desai, A.R.; et al. The SMAP Level 4 Carbon Product for Monitoring Ecosystem Land–Atmosphere CO2 Exchange. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6517–6532. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Focardi, P.; Horgan, K.A.; Knuble, J.; Ehsan, N.; Lucey, J.; Brambora, C.; Brown, P.R.; Hoffman, P.J.; French, R.T.; et al. SMAP L-Band Microwave Radiometer: Instrument Design and First Year on Orbit. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1954–1966. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, H.; Wang, L.; Deng, C. Evaluation of AMSR2 soil moisture products over the contiguous United States using in situ data from the International Soil Moisture Network. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 187–199. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, T.; Zhou, P.; Shao, Y.; Gao, S. Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sens. 2017, 9, 104. [Google Scholar] [CrossRef]
- Kim, H.; Lakshmi, V. Use of Cyclone Global Navigation Satellite System (CyGNSS) Observations for Estimation of Soil Moisture. Geophys. Res. Lett. 2018, 45, 8272–8282. [Google Scholar] [CrossRef]
- Camps, A.; Park, H.; Pablos, M.; Foti, G.; Gommenginger, C.P.; Liu, P.-W.; Judge, J. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4730–4742. [Google Scholar] [CrossRef]
- Ruf, C.S.; Chew, C.; Lang, T.; Morris, M.G.; Nave, K.; Ridley, A.; Balasubramaniam, R. A New Paradigm in Earth Environmental Monitoring with the CYGNSS Small Satellite Constellation. Sci. Rep. 2018, 8, 8782. [Google Scholar] [CrossRef]
- Bartalis, Z.; Wagner, W.; Naeimi, V.; Hasenauer, S.; Scipal, K.; Bonekamp, H.; Figa, J.; Anderson, C. Initial soil moisture retrievals from the METOP-A Advanced Scatterometer (ASCAT). Geophys. Res. Lett. 2007, 34, L20401. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Snoeij, P.; Attema, E.; Torres, R.; Levrini, G.; Croci, R.; Abbate, M.L.; Pietropaolo, A.; Rostan, F.; Huchler, M. C-SAR instrument design for the Sentinel-1 mission. In Proceedings of the 2010 IEEE Radar Conference, Washington, DC, USA, 10–14 May 2010; pp. 25–30. [Google Scholar]
- Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Chaubell, M.J.; Colliander, A.; Yueh, S.; Jagdhuber, T.; Chen, F.; Crow, W.; O’Neill, P.E.; et al. The SMAP and Copernicus Sentinel 1A/B microwave active-passive high resolution surface soil moisture product. Remote Sens. Environ. 2019, 233, 111380. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Yuan, Q.; Lin, L.; Yue, L.; Xu, H. Downscaling of soil moisture products using deep learning: Comparison and analysis on Tibetan Plateau. J. Hydrol. 2022, 607, 127570. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, X.; Chen, N.; Ma, H.; Zeng, J.; Fu, P.; Nam, W.-H.; Niyogi, D. Generating high-accuracy and cloud-free surface soil moisture at 1 km resolution by point-surface data fusion over the Southwestern U.S. Agric. For. Meteorol. 2022, 321, 108985. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Guo, J.; Shi, J.; Zhao, T.; Tong, B. A 1 km daily surface soil moisture dataset of enhanced coverage under all-weather conditions over China in 2003–2019. Earth Syst. Sci. Data 2022, 14, 2613–2637. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Bi, H.; Ma, J.; Zheng, W.; Zeng, J. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef]
- Martens, B.; Miralles, D.G.; Lievens, H.; Schalie, R.V.D.; Jeu, R.A.M.D.; Fernández-Prieto, D.; Beck, H.E.; Dorigo, W.A.; Verhoest, N.E.C. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef]
- Xia, Y.; Ek, M.B.; Wu, Y.; Ford, T.; Quiring, S.M. Comparison of NLDAS-2 Simulated and NASMD Observed Daily Soil Moisture. Part I: Comparison and Analysis. J. Hydrometeorol. 2015, 16, 1962–1980. [Google Scholar] [CrossRef]
- Kumar, S.V.; Wang, S.; Mocko, D.M.; Peters-Lidard, C.D.; Xia, Y. Similarity Assessment of Land Surface Model Outputs in the North American Land Data Assimilation System. Water Resour. Res. 2017, 53, 8941–8965. [Google Scholar] [CrossRef]
- Kathuria, D.; Mohanty, B.P.; Katzfuss, M. Multiscale data fusion for surface soil moisture estimation: A spatial hierarchical approach. Water Resour. Res. 2019, 55, 10443–10465. [Google Scholar] [CrossRef]
- Jamshidi, S.; Zand-Parsa, S.; Naghdyzadegan Jahromi, M.; Niyogi, D. Application of A Simple Landsat-MODIS Fusion Model to Estimate Evapotranspiration over A Heterogeneous Sparse Vegetation Region. Remote Sens. 2019, 11, 741. [Google Scholar] [CrossRef]
- Yang, Y.; Anderson, M.C.; Gao, F.; Hain, C.R.; Semmens, K.A.; Kustas, W.P.; Noormets, A.; Wynne, R.H.; Thomas, V.A.; Sun, G. Daily Landsat-scale evapotranspiration estimation over a forested landscape in North Carolina, USA, using multi-satellite data fusion. Hydrol. Earth Syst. Sci. 2017, 21, 1017–1037. [Google Scholar] [CrossRef]
- Peng, J.; Tanguy, M.; Robinson, E.L.; Pinnington, E.; Evans, J.; Ellis, R.; Cooper, E.; Hannaford, J.; Blyth, E.; Dadson, S. Estimation and evaluation of high-resolution soil moisture from merged model and Earth observation data in the Great Britain. Remote Sens. Environ. 2021, 264, 112610. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Tian, J. Improving Surface Soil Moisture Estimates in Humid Regions by an Enhanced Remote Sensing Technique. Geophys. Res. Lett. 2021, 48, e2020GL091459. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Zhang, X.; Moradkhani, H.; Zhang, C.; Hu, C. In-situ and triple-collocation based evaluations of eight global root zone soil moisture products. Remote Sens. Environ. 2021, 254, 112248. [Google Scholar] [CrossRef]
- Li, R.; Huang, T.; Song, Y.; Huang, S.; Zhang, X. Generating 1 km Spatially Seamless and Temporally Continuous Air Temperature Based on Deep Learning over Yangtze River Basin, China. Remote Sens. 2021, 13, 3904. [Google Scholar] [CrossRef]
- Wang, X.; Lü, H.; Crow, W.T.; Zhu, Y.; Wang, Q.; Su, J.; Zheng, J.; Gou, Q. Assessment of SMOS and SMAP soil moisture products against new estimates combining physical model, a statistical model, and in-situ observations: A case study over the Huai River Basin, China. J. Hydrol. 2021, 598, 126468. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Chen, Z.; Wu, L.; Li, X.; Zhang, L.; Di, L.; Gong, J.; Li, D. Geospatial sensor web: A cyber-physical infrastructure for geoscience research and application. Earth-Sci. Rev. 2018, 185, 684–703. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N. Reconstruction of GF-1 Soil Moisture Observation Based on Satellite and In Situ Sensor Collaboration Under Full Cloud Contamination. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5185–5202. [Google Scholar] [CrossRef]
- Haines, G.V. Spherical cap harmonic analysis. J. Geophys. Res. 1985, 90, 2583–2591. [Google Scholar] [CrossRef]
- Razin, M.R.G.; Voosoghi, B. Regional ionosphere modeling using spherical cap harmonics and empirical orthogonal functions over Iran. Acta Geod. Geophys. 2017, 52, 19–33. [Google Scholar] [CrossRef]
- Li, W.; Zhao, D.; Shen, Y.; Zhang, K. Modeling Australian TEC Maps Using Long-Term Observations of Australian Regional GPS Network by Artificial Neural Network-Aided Spherical Cap Harmonic Analysis Approach. Remote Sens. 2020, 12, 3851. [Google Scholar] [CrossRef]
- Torta, J.M. Modelling by Spherical Cap Harmonic Analysis: A Literature Review. Surv. Geophys. 2020, 41, 201–247. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, Y.; Jiang, Y.; Liu, B.-J.; Jiang, J.; Liu, Z.-W.; Ye, M.-C.; Wang, H.-S.; Li, X.-M. Spherical cap harmonic analysis of regional magnetic anomalies based on CHAMP satellite data. Appl. Geophys. 2016, 13, 561–569. [Google Scholar] [CrossRef]
- Deng, J.; Zhao, X.; Zhang, A.; Ke, F. A Robust Method for GPS/BDS Pseudorange Differential Positioning Based on the Helmert Variance Component Estimation. J. Sens. 2017, 2017, 8172342. [Google Scholar] [CrossRef]
- Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res. 2008, 113, F01002. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5 Land Hourly Data from 1981 to Present; European Space Agency (ESA): Paris, France, 2019. [Google Scholar] [CrossRef]
- Beaudoing, H.A.M.R. GLDAS Noah Land Surface Model L4 3 Hourly 0.25 × 0.25 Degree V2.1; NASA: Washington, DC, USA, 2020. [CrossRef]
- Miralles, D.G.; Holmes, T.R.H.; De Jeu, R.A.M.; Gash, J.H.; Meesters, A.G.C.A.; Dolman, A.J. Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci. 2011, 15, 453–469. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al. Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- O’Neill, P.E.S.; Chan, E.G.; Njoku, T.; Jackson, R.B.; Chaubell, J. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8; National Snow & Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; 2327-638X (Online); Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2014.
- Jpl, N. NASA Shuttle Radar Topography Mission Global 3 Arc Second; NASA: Washington, DC, USA, 2013. [CrossRef]
- Cui, H.; Jiang, L.; Du, J.; Zhao, S.; Wang, G.; Lu, Z.; Wang, J. Evaluation and analysis of AMSR-2, SMOS, and SMAP soil moisture products in the Genhe area of China. J. Geophys. Res. Atmos. 2017, 122, 8650–8666. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xu, X.; Frey, S. Validation of SMOS, SMAP, and ESA CCI Soil Moisture Over a Humid Region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10784–10793. [Google Scholar] [CrossRef]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef]
- Koren, V.; Schaake, J.; Mitchell, K.; Duan, Q.Y.; Chen, F.; Baker, J.M. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. Atmos. 1999, 104, 19569–19585. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Schlosser, C.A.; Oleson, K.W.; Niu, G.; Houser, P.R.; Dirmeyer, P.A.; Denning, A.S.; Bosilovich, M.G.; Bonan, G.B.; Baker, I.; et al. The Common Land Model. Bull. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef]
- Mousa, B.G.; Shu, H. Spatial Evaluation and Assimilation of SMAP, SMOS, and ASCAT Satellite Soil Moisture Products Over Africa Using Statistical Techniques. Earth Space Sci. 2020, 7, e2019EA000841. [Google Scholar] [CrossRef]
- Brocca, L.; Melone, F.; Moramarco, T.; Wagner, W.; Hasenauer, S. ASCAT soil wetness index validation through in situ and modeled soil moisture data in central Italy. Remote Sens. Environ. 2010, 114, 2745–2755. [Google Scholar] [CrossRef]
- Tavakol, A.; Rahmani, V.; Quiring, S.M.; Kumar, S.V. Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States. Remote Sens. Environ. 2019, 229, 234–246. [Google Scholar] [CrossRef]
- Chen, F.; Crow, W.T.; Bindlish, R.; Colliander, A.; Burgin, M.S.; Asanuma, J.; Aida, K. Global-scale Evaluation of SMAP, SMOS and ASCAT Soil Moisture Products using Triple Collocation. Remote Sens Environ. 2018, 214, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dorigo, W.A.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P.; et al. The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef]
- Gruber, A.; Dorigo, W.A.; Zwieback, S.; Xaver, A.; Wagner, W. Characterizing Coarse-Scale Representativeness of in situ Soil Moisture Measurements from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–16. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Xu, H.; Li, T.; Shen, H.; Zhang, L. Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental U.S. J. Hydrol. 2020, 580, 124351. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Liu, J.; Chen, R.; Wang, Z.; Zhang, H. Spherical cap harmonic model for mapping and predicting regional TEC. GPS Solut. 2010, 15, 109–119. [Google Scholar] [CrossRef]
- Thanh, L.T.; Minh, L.H.; Doumbia, V.; Amory-Mazaudier, C.; Dung, N.T.; Chau, H.D. A spherical cap model of the geomagnetic field over southeast Asia from CHAMP and Swarm satellite observations. J. Earth Syst. Sci. 2021, 130, 13. [Google Scholar] [CrossRef]
- Duka, B. Comparison of different methods of analysis of satellite geomagnetic anomalies over Italy. Ann. Geophys. 1998, 41. [Google Scholar] [CrossRef]
- Hwang, C.; Chen, S.-K. Fully normalized spherical cap harmonics: Application to the analysis of sea-level data from TOPEX/POSEIDON and ERS-1. Geophys. J. Int. 1997, 129, 450–460. [Google Scholar] [CrossRef]
- Lebedev, N.N.; Silverman, R.A.; Livhtenberg, D.B. Special Functions and Their Applications. Phys. Today 1965, 18, 70–72. [Google Scholar] [CrossRef]
- Helmert, F.R. Die Ausgleichungsrechnung nach der Methode der Kleinsten Quadrate. Science 1907, 26, 663–664. [Google Scholar] [CrossRef]
- Li, M.; Nie, W.; Xu, T.; Rovira-Garcia, A.; Fang, Z.; Xu, G. Helmert Variance Component Estimation for Multi-GNSS Relative Positioning. Sensors 2020, 20, 669. [Google Scholar] [CrossRef] [PubMed]
- Al-Yaari, A.; Wigneron, J.P.; Dorigo, W.; Colliander, A.; Pellarin, T.; Hahn, S.; Mialon, A.; Richaume, P.; Fernandez-Moran, R.; Fan, L.; et al. Assessment and inter-comparison of recently developed/reprocessed microwave satellite soil moisture products using ISMN ground-based measurements. Remote Sens. Environ. 2019, 224, 289–303. [Google Scholar] [CrossRef]
Products (Acronym) | Sensor(s) | Spatial Resolution | Temporal Resolution | Temporal Coverage | Units | Reference(s) |
---|---|---|---|---|---|---|
Satellite/Model products | ||||||
AMSR2(LPRM) L3 | AMSR2 | 0.25° | Daily | 2012–present | percent (%) | [51] |
ERA5-Land | Mult-sensors | 0.1° | Hourly | 1979–present | m3 m−3 | [52] |
ESA CCI combined v07.1 | Mult-sensors | 0.25° | Daily | 1978–2021 | m3 m−3 | [27] |
GLDAS-Noah v2.1 | Mult- sensors | 0.25° | 3-hourly | 2000–2022.7 | kg m−2 | [53] |
GLEAM v3.6a | Data set | 0.25° | Daily | 1980–2021 | m3 m−3 | [54] |
MetOp(-A, -B) L2 | ASCAT | ~25 km | 1–2 days | 2007–present | percent (%) | [20] |
SMAP L2 | Radiometer | ~36 km | 1–2 days | 2015–present | cm3 cm−3 | [55,56] |
SMOS L2 | Radiometer | 15 km | 1–2 days | 2010–present | m3 m−3 | [12] |
Auxiliary products | ||||||
CHIRPS v2.0 | Data set | 0.25° | Daily | 1981–present | mm/day | [57] |
SRTM DEM | SRTM | ~90 m | Multi-Day | Feb 2000 | m | [58] |
Network Name | No. of Site | Probes Depth (cm) | IGBP Land Cover a | References |
---|---|---|---|---|
SCAN | 48 | 5, 10, 20, 51, 102 | Diverse land cover | http://www.wcc.nrcs.usda.gov/ (accessed on 20 August 2022) |
SNOTEL | 321 | 5, 10, 20, 51, 102 | Diverse land cover | http://www.wcc.nrcs.usda.gov/ (accessed on 20 August 2022) |
USCRN | 32 | 5, 10, 20, 50, 100 | Diverse land cover | http://www.ncdc.noaa.gov/crn/ (accessed on 20 August 2022) |
Products | Quinault-4-NE | Fallbrook-5-NE | LONGVALLEYJCT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R | RMSE | ubRMSE | Bias | R | RMSE | ubRMSE | Bias | R | RMSE | ubRMSE | Bias | |
Fused | 0.916 | 0.038 | 0.029 | 0.029 | 0.952 | 0.018 | 0.016 | −0.008 | 0.863 | 0.035 | 0.035 | 0.004 |
ERA5-Land | 0.834 | 0.155 | 0.045 | 0.148 | 0.920 | 0.516 | 0.051 | 0.009 | 0.842 | 0.097 | 0.051 | 0.083 |
ESA CCI | 0.644 | 0.081 | 0.053 | 0.062 | 0.878 | 0.026 | 0.024 | −0.009 | 0.853 | 0.048 | 0.031 | 0.036 |
GLDAS-Noah | 0.712 | 0.076 | 0.048 | 0.058 | 0.809 | 0.039 | 0.032 | −0.020 | 0.731 | 0.050 | 0.044 | 0.023 |
GLEAM | 0.771 | 0.156 | 0.043 | 0.149 | 0.904 | 0.075 | 0.035 | 0.070 | 0.832 | 0.092 | 0.036 | 0.086 |
k | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | ||||||||||||
1 | 8.68 | 6.58 | |||||||||||
2 | 14.14 | 14.14 | 11.25 | ||||||||||
3 | 20.58 | 19.88 | 19.15 | 15.66 | |||||||||
4 | 26.30 | 26.30 | 25.15 | 23.93 | 19.96 | ||||||||
5 | 32.55 | 32.12 | 31.67 | 30.17 | 28.58 | 24.19 | |||||||
6 | 38.36 | 38.36 | 37.60 | 36.82 | 35.04 | 33.13 | 28.38 | ||||||
7 | 44.54 | 44.22 | 43.90 | 42.88 | 41.83 | 39.79 | 37.61 | 32.53 | |||||
8 | 50.40 | 50.40 | 49.82 | 49.24 | 48.00 | 46.72 | 44.46 | 42.04 | 36.66 | ||||
9 | 56.53 | 56.28 | 56.03 | 55.24 | 54.45 | 53.01 | 51.52 | 49.07 | 46.43 | 40.76 | |||
10 | 62.42 | 62.42 | 61.96 | 61.49 | 60.52 | 59.54 | 57.93 | 56.26 | 53.62 | 50.78 | 44.85 | ||
11 | 68.53 | 68.32 | 68.11 | 67.47 | 66.83 | 65.70 | 64.54 | 62.77 | 60.93 | 58.13 | 55.09 | 48.92 | |
12 | 74.16 | 74.47 | 74.07 | 73.66 | 72.85 | 72.06 | 70.78 | 69.47 | 67.55 | 65.56 | 62.60 | 59.39 | 52.98 |
Satellite | Min Weight | Max Weight | Mean Weight |
---|---|---|---|
SMAP | 1 | 1 | 1 |
AMSR2 | 0.075 | 0.654 | 0.239 |
ERA5-Land | 0.082 | 0.632 | 0.290 |
ESA CCI | 0.102 | 1.707 | 0.832 |
GLDAS | 0.034 | 1.521 | 0.644 |
GLEAM | 0.042 | 0.710 | 0.289 |
MetOp-A | 0.051 | 0.690 | 0.330 |
MetOp-B | 0.050 | 0.713 | 0.338 |
SMOS | 0.041 | 0.580 | 0.301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Chen, P.; Wang, R.; Qiu, L.; Tang, F.; Xiong, M. Multi-Source Soil Moisture Data Fusion Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation in the Western U.S. Sensors 2023, 23, 8019. https://doi.org/10.3390/s23198019
Chen H, Chen P, Wang R, Qiu L, Tang F, Xiong M. Multi-Source Soil Moisture Data Fusion Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation in the Western U.S. Sensors. 2023; 23(19):8019. https://doi.org/10.3390/s23198019
Chicago/Turabian StyleChen, Hao, Peng Chen, Rong Wang, Liangcai Qiu, Fucai Tang, and Mingzhu Xiong. 2023. "Multi-Source Soil Moisture Data Fusion Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation in the Western U.S." Sensors 23, no. 19: 8019. https://doi.org/10.3390/s23198019
APA StyleChen, H., Chen, P., Wang, R., Qiu, L., Tang, F., & Xiong, M. (2023). Multi-Source Soil Moisture Data Fusion Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation in the Western U.S. Sensors, 23(19), 8019. https://doi.org/10.3390/s23198019