Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery
Abstract
:1. Introduction
- Proposition and evaluation of a method for predicting sensor performance with respect to the exposure of camouflaged targets.
- Introduction of a metric for measuring sensor performance with respect to the exposure of camouflaged targets.
- Provision of an extensive multispectral dataset containing multiple camouflaged targets: the eXtended Multispectral Dataset for Camouflage Detection (MUDCAD-X).
1.1. Related Work
1.2. Outline
2. Methods and Materials
2.1. Dataset
- The yellow 3D camouflage net was not used in area A in summer or autumn, as the environment was all green and no appropriate spot could be found for it.
- Only four capture flights over area B were conducted in summer, as the UAV broke during the experiments and could not be repaired in time.
- The yellow 3D camouflage net was left in the same place on all four summer capture flights in area B, as it had been overlooked when the camouflaged targets were rearranged.
2.2. Measuring Sensor Performance
2.3. Predicting Sensor Performance
3. Experiments and Results
3.1. Training
3.2. Evaluation
- LWIR, NIR, EIR, red, blue, and green for any camouflaged target.
- NIR, LWIR, EIR, green, blue, and red for green camouflaged targets.
- NIR, blue, EIR, red, green, and LWIR for gray camouflaged targets.
- Red, blue, LWIR, green, EIR, and NIR for yellow camouflaged targets.
4. Discussion
4.1. Implications
4.2. Limitations
4.3. Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EIR | Edge Infra-red/Red-edge |
GBT | Gradient Boosted Tree |
LBP | Local Binary Pattern |
LWIR | Long-Wave Infra-Red |
MUDCAD-X | eXtendend Multispectral Dataset for Camouflage Detection |
NDRE | Normalized Difference Red-Edge index |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infra-Red |
RF | Random Forest |
RMSE | Root Mean Square Error |
TVI | Target Visibility Index |
UAV | Unmanned Aerial Vehicle |
UniBwM | University of the Bundeswehr Munich |
VIS | Visual |
XGBoost | eXtreme Gradient Boosting |
References
- Ampatzidis, Y.; Partel, V. UAV-Based High Throughput Phenotyping in Citrus Utilizing Multispectral Imaging and Artificial Intelligence. Remote Sens. 2019, 11, 410. [Google Scholar] [CrossRef]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Osco, L.P.; Arruda, M.d.S.d.; Marcato Junior, J.; da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T.; et al. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Gao, Y.; Li, W.; Zhang, M.; Wang, J.; Sun, W.; Tao, R.; Du, Q. Hyperspectral and Multispectral Classification for Coastal Wetland Using Depthwise Feature Interaction Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Osorio, K.; Puerto, A.; Pedraza, C.; Jamaica, D.; Rodríguez, L. A Deep Learning Approach for Weed Detection in Lettuce Crops Using Multispectral Images. AgriEngineering 2020, 2, 471–488. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Lan, Y.; Huang, Z.; Deng, X.; Zhu, Z.; Huang, H.; Zheng, Z.; Lian, B.; Zeng, G.; Tong, Z. Comparison of machine learning methods for citrus greening detection on UAV multispectral images. Comput. Electron. Agric. 2020, 171, 105234. [Google Scholar] [CrossRef]
- Kerkech, M.; Hafiane, A.; Canals, R. Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agric. 2020, 174, 105446. [Google Scholar] [CrossRef]
- McAllister, E.; Payo, A.; Novellino, A.; Dolphin, T.; Medina-Lopez, E. Multispectral satellite imagery and machine learning for the extraction of shoreline indicators. Coast. Eng. 2022, 174, 104102. [Google Scholar] [CrossRef]
- Yuan, K.; Zhuang, X.; Schaefer, G.; Feng, J.; Guan, L.; Fang, H. Deep-Learning-Based Multispectral Satellite Image Segmentation for Water Body Detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 7422–7434. [Google Scholar] [CrossRef]
- Geyman, E.C.; Maloof, A.C. A Simple Method for Extracting Water Depth From Multispectral Satellite Imagery in Regions of Variable Bottom Type. Earth Space Sci. 2019, 6, 527–537. [Google Scholar] [CrossRef]
- Shin, J.i.; Seo, W.w.; Kim, T.; Park, J.; Woo, C.s. Using UAV Multispectral Images for Classification of Forest Burn Severity—A Case Study of the 2019 Gangneung Forest Fire. Forests 2019, 10, 1025. [Google Scholar] [CrossRef]
- Hupel, T.; Stütz, P. Adopting Hyperspectral Anomaly Detection for Near Real-Time Camouflage Detection in Multispectral Imagery. Remote Sens. 2022, 14, 3755. [Google Scholar] [CrossRef]
- Zwick, M.; Gerdts, M.; Stütz, P. Sensor-Model-Based Trajectory Optimization for UAVs to Enhance Detection Performance: An Optimal Control Approach and Experimental Results. Sensors 2023, 23, 664. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Krach, B.; Katsilieris, F.; Stütz, P. Sensor Scheduling Strategies for 1-to-N Multi-Object Tracking. In Proceedings of the 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), Portsmouth, VA, USA, 18–22 September 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Ruß, M.; Stütz, P. Airborne Sensor and Perception Management. In Proceedings of the Modelling and Simulation for Autonomous Systems; Mazal, J., Fagiolini, A., Vašík, P., Bruzzone, A., Pickl, S., Neumann, V., Stodola, P., Lo Storto, S., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2023; pp. 182–206. [Google Scholar] [CrossRef]
- Hellert, C.; Koch, S.; Stütz, P. Using Algorithm Selection for Adaptive Vehicle Perception Aboard UAV. In Proceedings of the 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 18–21 September 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Adrian, W. Visibility of targets: Model for calculation. Light. Res. Technol. 1989, 21, 181–188. [Google Scholar] [CrossRef]
- Rea, M.S.; Ouellette, M.J. Relative visual performance: A basis for application. Light. Res. Technol. 1991, 23, 135–144. [Google Scholar] [CrossRef]
- Brémond, R.; Dumont, E.; Ledoux, V.; Mayeur, A. Photometric measurements for visibility level computations. Light. Res. Technol. 2011, 43, 119–128. [Google Scholar] [CrossRef]
- Brémond, R.; Bodard, V.; Dumont, E.; Nouailles-Mayeur, A. Target visibility level and detection distance on a driving simulator. Light. Res. Technol. 2013, 45, 76–89. [Google Scholar] [CrossRef]
- Chen, Z.; Tu, Y.; Wang, Z.; Liu, L.; Wang, L.; Lou, D.; Zhu, X.; Teunissen, K. Target visibility under mesopic vision using a driving simulator. Light. Res. Technol. 2019, 51, 883–899. [Google Scholar] [CrossRef]
- Lebouc, L.; Boucher, V.; Greffier, F.; Liandrat, S.; Nicolaï, A.; Richard, P. Influence of road surfaces on the calculation of a target visibility taking into account the direct and indirect lighting. In Proceedings of the CIE 2021 Conference, Online, 27–29 September 2021. [Google Scholar] [CrossRef]
- Kwon, T.M. Atmospheric Visibility Measurements Using Video Cameras: Relative Visibility; University of Minnesota Duluth: Duluth, MN, USA, 2004. [Google Scholar]
- Yin, X.C.; He, T.T.; Hao, H.W.; Xu, X.; Cao, X.Z.; Li, Q. Learning Based Visibility Measuring with Images. In Proceedings of the Neural Information Processing; Lu, B.L., Zhang, L., Kwok, J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 711–718. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, L. Saliency Detection: A Spectral Residual Approach. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Montabone, S.; Soto, A. Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image Vis. Comput. 2010, 28, 391–402. [Google Scholar] [CrossRef]
- Veksler, O. Test Time Adaptation with Regularized Loss for Weakly Supervised Salient Object Detection. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 7360–7369. [Google Scholar] [CrossRef]
- Peli, E. Contrast in complex images. J. Opt. Soc. Am. A 1990, 7, 2032–2040. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Authors, O. ODM—A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. 2020. Available online: https://github.com/OpenDroneMap/ODM (accessed on 3 March 2023).
- Evangelidis, G.D.; Psarakis, E.Z. Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1858–1865. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000. Available online: http://www.drdobbs.com/open-source/the-opencv-library/184404319 (accessed on 3 March 2023).
- CVAT.ai Corporation. Computer Vision Annotation Tool (CVAT). 2022. Available online: https://github.com/opencv/cvat (accessed on 3 March 2023).
- Shiffler, R.E.; Harsha, P.D. Upper and Lower Bounds for the Sample Standard Deviation. Teach. Stat. 1980, 2, 84–86. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns. In Proceedings of the Computer Vision-ECCV 2000, Dublin, Ireland, 26 June–1 July 2000; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2000; pp. 404–420. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE Trans. Biomed. Eng. 2016, 63, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Shabbir, S.; Roy, S.K.; Hong, D.; Wu, X.; Yao, J.; Khan, A.M.; Mazzara, M.; Distefano, S.; Chanussot, J. Hyperspectral Image Classification-Traditional to Deep Models: A Survey for Future Prospects. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 968–999. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Coelho, L.P. Mahotas: Open source software for scriptable computer vision. J. Open Res. Softw. 2013, 1, e3. [Google Scholar] [CrossRef]
- Blaom, A.D.; Kiraly, F.; Lienart, T.; Simillides, Y.; Arenas, D.; Vollmer, S.J. MLJ: A Julia package for composable machine learning. J. Open Source Softw. 2020, 5, 2704. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. Available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 3 March 2023). [CrossRef]
- Sadeghi, B.; Chiarawongse, P.; Squire, K.; Jones, D.C.; Noack, A.; St-Jean, C.; Huijzer, R.; Schätzle, R.; Butterworth, I.; Peng, Y.F.; et al. DecisionTree.jl—A Julia Implementation of the CART Decision Tree and Random Forest Algorithms, Zenodo, 2022. [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; KDD ’16. pp. 785–794. [Google Scholar] [CrossRef]
Camouflaged Target | Group | |
---|---|---|
artificial turf | 9.3% | green 65.8% |
artificial hedge | 9.4% | |
green tarp | 9.2% | |
green 2D camouflage net | 9.9% | |
green 3D camouflage net | 9.6% | |
2 persons in green uniforms | 18.4% | |
gray tarp | 3.1% | gray 11.4% |
anthracite fleece | 2.2% | |
gray 3D camouflage net | 6.2% | |
yellow 3D camouflage net | 5.9% | yellow 22.8% |
2 persons in yellow uniforms | 16.9% |
Band | Center Wavelength | Bandwidth |
---|---|---|
visual (VIS) | - | - |
blue | 475 nm | 32 nm |
green | 560 nm | 27 nm |
red | 668 nm | 14 nm |
edge-infrared (EIR) | 717 nm | 12 nm |
near-infrared (NIR) | 842 nm | 57 nm |
long-wave infrared (LWIR) | 10.5 m | 6 m |
LBP | Haralick | ||
---|---|---|---|
uniform | non-uniform | mean | min-max |
1–17 | 18 | 19–32 | 33–46 |
-SVR | Random Forest | XGBoost | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | Trees | Leaves | Split | Features | Fraction | Rounds | Depth | ||||
any target models | |||||||||||
blue | 0.00412 | 0.044 | 46 | 3 | 15 | 1.0 | 200 | 0.05 | 6 | 2.5 | |
green | 0.00162 | 0.06 | 46 | 3 | 7 | 1.0 | 400 | 0.025 | 2 | 0.001 | |
red | 0.0041 | 0.041 | 28 | 2 | 16 | 0.8 | 450 | 0.1 | 2 | 30 | |
EIR | 0.0018 | 0.022 | 14 | 1 | 8 | 0.9 | 275 | 0.04 | 6 | 0.1 | |
NIR | 0.00112 | 0.026 | 28 | 1 | 4 | 1.0 | 125 | 0.05 | 4 | 0.001 | |
LWIR | 0.00747 | 0.1 | 23 | 1 | 3 | 0.8 | 475 | 0.1 | 2 | 25 | |
green target models | |||||||||||
blue | 0.00068 | 0.038 | 41 | 3 | 5 | 1.0 | 125 | 0.065 | 4 | 0.1 | |
green | 0.00202 | 0.038 | 14 | 1 | 5 | 0.8 | 100 | 0.075 | 4 | 0.25 | |
red | 0.00163 | 0.1 | 28 | 1 | 2 | 46 | 1.0 | 150 | 0.06 | 4 | 0.001 |
EIR | 0.00538 | 0.041 | 23 | 2 | 16 | 0.6 | 75 | 0.08 | 2 | 0.001 | |
NIR | 0.00748 | 0.014 | 10 | 13 | 19 | 46 | 0.5 | 75 | 0.095 | 2 | 0.001 |
LWIR | 0.00835 | 0.089 | 10 | 4 | 11 | 0.8 | 300 | 0.1 | 2 | 27.5 | |
gray target models | |||||||||||
blue | 0.01 | 0.093 | 32 | 5 | 8 | 46 | 0.9 | 200 | 0.1 | 2 | 1.0 |
green | 0.00689 | 0.03 | 23 | 4 | 6 | 1.0 | 150 | 0.05 | 4 | 0.5 | |
red | 0.00996 | 0.018 | 19 | 11 | 2 | 46 | 0.5 | 100 | 0.095 | 2 | 50 |
EIR | 0.00989 | 0.086 | 23 | 2 | 2 | 46 | 0.6 | 100 | 0.06 | 2 | 5.0 |
NIR | 0.00985 | 0.028 | 19 | 9 | 11 | 0.9 | 125 | 0.045 | 2 | 0.5 | |
LWIR | 0.00428 | 0.021 | 10 | 14 | 7 | 46 | 0.5 | 375 | 0.1 | 2 | 27.5 |
yellow target models | |||||||||||
blue | 0.00144 | 0.08 | 14 | 5 | 9 | 1.0 | 100 | 0.1 | 6 | 0.1 | |
green | 0.00705 | 0.081 | 14 | 4 | 14 | 0.5 | 225 | 0.075 | 8 | 0.25 | |
red | 0.00847 | 0.096 | 41 | 3 | 2 | 0.8 | 75 | 0.095 | 6 | 0.1 | |
EIR | 0.00299 | 0.006 | 10 | 1 | 7 | 46 | 1.0 | 125 | 0.06 | 4 | 0.1 |
NIR | 0.00138 | 0.001 | 28 | 2 | 2 | 0.6 | 125 | 0.095 | 2 | 50 | |
LWIR | 0.00668 | 0.1 | 37 | 4 | 12 | 46 | 1.0 | 200 | 0.09 | 12 | 0.1 |
Any Target Models | Green Target Models | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-SVR | Random Forest | -SVR | Random Forest | ||||||||||||||||
56.1 | 71.9 | 83.6 | 88.9 | 95.3 | 51.5 | 67.8 | 84.2 | 88.3 | 97.1 | 57.3 | 74.5 | 86.0 | 93.0 | 98.7 | 58.0 | 72.6 | 84.7 | 91.7 | 97.5 |
35.7 | 59.1 | 71.3 | 88.9 | 33.3 | 59.6 | 70.8 | 87.7 | 42.7 | 73.2 | 84.7 | 93.0 | 36.9 | 67.5 | 79.6 | 91.1 | ||||
37.4 | 53.8 | 72.5 | 35.7 | 53.2 | 75.4 | 47.8 | 68.2 | 86.0 | 49.7 | 69.4 | 84.7 | ||||||||
23.4 | 55.0 | 22.2 | 59.6 | 47.1 | 71.3 | 38.9 | 68.8 | ||||||||||||
34.5 | 35.7 | 38.9 | 42.0 | ||||||||||||||||
XGBoost | Baseline | XGBoost | Baseline | ||||||||||||||||
50.9 | 68.4 | 83.6 | 92.4 | 97.7 | 47.4 | 56.1 | 69.6 | 75.4 | 82.5 | 58.6 | 70.1 | 86.6 | 91.7 | 96.8 | 31.2 | 68.2 | 81.5 | 89.2 | 96.8 |
29.8 | 57.9 | 70.8 | 87.1 | 24.6 | 48.0 | 57.9 | 71.9 | 35.7 | 68.8 | 82.8 | 90.4 | 28.7 | 60.5 | 73.2 | 83.4 | ||||
31.0 | 46.8 | 68.4 | 33.9 | 46.2 | 60.2 | 51.0 | 68.8 | 83.4 | 47.8 | 65.0 | 80.3 | ||||||||
18.1 | 53.8 | 19.9 | 48.5 | 44.6 | 65.6 | 35.0 | 54.1 | ||||||||||||
34.5 | 28.7 | 39.5 | 25.5 | ||||||||||||||||
Gray Target Models | Yellow Target Models | ||||||||||||||||||
-SVR | Random Forest | -SVR | Random Forest | ||||||||||||||||
57.4 | 77.0 | 86.9 | 93.4 | 98.4 | 59.0 | 77.0 | 86.9 | 91.8 | 98.4 | 49.5 | 75.7 | 91.3 | 95.1 | 99.0 | 47.6 | 74.8 | 85.4 | 94.2 | 100.0 |
34.4 | 59.0 | 82.0 | 93.4 | 44.3 | 72.1 | 77.0 | 90.2 | 35.9 | 66.0 | 82.5 | 93.2 | 37.9 | 66.0 | 83.5 | 93.2 | ||||
24.6 | 57.4 | 72.1 | 29.5 | 52.5 | 78.7 | 39.8 | 74.8 | 90.3 | 34.0 | 72.8 | 90.3 | ||||||||
34.4 | 62.3 | 24.6 | 63.9 | 51.5 | 84.5 | 54.4 | 80.6 | ||||||||||||
29.5 | 34.4 | 74.8 | 72.8 | ||||||||||||||||
XGBoost | Baseline | XGBoost | Baseline | ||||||||||||||||
50.8 | 77.0 | 85.2 | 88.5 | 96.7 | 24.6 | 63.9 | 83.6 | 91.8 | 98.4 | 43.7 | 69.9 | 83.5 | 91.3 | 99.0 | 31.1 | 71.8 | 92.2 | 94.2 | 96.1 |
36.1 | 65.6 | 77.0 | 88.5 | 24.6 | 44.3 | 70.5 | 88.5 | 36.9 | 69.9 | 84.5 | 96.1 | 31.1 | 75.7 | 89.3 | 95.1 | ||||
34.4 | 60.7 | 82.0 | 18.0 | 41.0 | 59.0 | 45.6 | 71.8 | 90.3 | 38.8 | 65.0 | 92.2 | ||||||||
26.2 | 62.3 | 24.6 | 47.5 | 57.3 | 84.5 | 53.4 | 84.5 | ||||||||||||
39.3 | 34.4 | 74.8 | 75.7 |
Any Target Models | Green Target Models | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-SVR | Random Forest | -SVR | Random Forest | ||||||||||||||||
18.5 | 28.1 | 20.2 | 17.8 | 15.6 | 8.6 | 20.8 | 21.0 | 17.1 | 17.7 | 83.7 | 9.3 | 5.5 | 4.3 | 2.0 | 85.7 | 6.5 | 3.9 | 2.9 | 0.7 |
45.2 | 23.2 | 23.2 | 23.6 | 35.7 | 24.4 | 22.2 | 22.0 | 48.9 | 21.1 | 15.7 | 11.5 | 28.9 | 11.6 | 8.7 | 9.2 | ||||
10.3 | 16.5 | 20.4 | 5.2 | 15.2 | 25.2 | 0.0 | 4.9 | 7.1 | 4.0 | 6.9 | 5.6 | ||||||||
17.6 | 13.3 | 11.8 | 22.9 | 34.5 | 31.8 | 10.9 | 27.1 | ||||||||||||
20.4 | 24.5 | 52.5 | 65.0 | ||||||||||||||||
XGBoost | XGBoost | ||||||||||||||||||
7.4 | 21.9 | 20.2 | 22.5 | 18.4 | 87.8 | 2.8 | 6.3 | 2.9 | 0.0 | ||||||||||
21.4 | 20.7 | 22.2 | 21.1 | 24.4 | 13.7 | 13.0 | 8.4 | ||||||||||||
−8.6 | 1.3 | 13.6 | 6.7 | 5.9 | 4.0 | ||||||||||||||
−8.8 | 10.8 | 27.3 | 21.2 | ||||||||||||||||
20.4 | 55.0 | ||||||||||||||||||
Gray Target Models | Yellow Target Models | ||||||||||||||||||
-SVR | Random Forest | -SVR | Random Forest | ||||||||||||||||
133.3 | 20.5 | 3.9 | 1.8 | 0.0 | 140.0 | 20.5 | 3.9 | 0.0 | 0.0 | 59.4 | 5.4 | −1.1 | 1.0 | 3.0 | 53.1 | 4.1 | −7.4 | 0.0 | 4.0 |
40.0 | 33.3 | 16.3 | 5.6 | 80.0 | 63.0 | 9.3 | 1.9 | 15.6 | −12.8 | −7.6 | −2.0 | 21.9 | −12.8 | −6.5 | −2.0 | ||||
36.4 | 40.0 | 22.2 | 63.6 | 28.0 | 33.3 | 2.5 | 14.9 | −2.1 | −12.5 | 11.9 | −2.1 | ||||||||
40.0 | 31.0 | 0.0 | 34.5 | −3.6 | 0.0 | 1.8 | −4.6 | ||||||||||||
−14.3 | 0.0 | −1.3 | −3.8 | ||||||||||||||||
XGBoost | XGBoost | ||||||||||||||||||
106.7 | 20.5 | 2.0 | −3.6 | −1.7 | 40.6 | −2.7 | −9.5 | −3.1 | 3.0 | ||||||||||
46.7 | 48.1 | 9.3 | 0.0 | 18.8 | −7.7 | −5.4 | 1.0 | ||||||||||||
90.9 | 48.0 | 38.9 | 17.5 | 10.4 | −2.1 | ||||||||||||||
6.7 | 31.0 | 7.3 | 0.0 | ||||||||||||||||
14.3 | −1.3 |
Green Target Models | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
-SVR | Random Forest | ||||||||||||||||||
−0.8 | 1.7 | 1.8 | 3.3 | 3.9 | 4.9 | −0.9 | 1.0 | 4.0 | 2.5 | ||||||||||
22.7 | 35.6 | 20.7 | 9.3 | 8.1 | 23.5 | 14.5 | 9.4 | ||||||||||||
47.9 | 35.5 | 28.2 | 50.9 | 34.7 | 20.7 | ||||||||||||||
191.9 | 57.3 | 172.0 | 38.4 | ||||||||||||||||
69.1 | 50.4 | ||||||||||||||||||
XGBoost | |||||||||||||||||||
7.2 | −3.6 | 2.5 | 2.5 | 3.2 | |||||||||||||||
4.4 | 21.7 | 14.9 | 7.9 | ||||||||||||||||
54.8 | 33.4 | 16.8 | |||||||||||||||||
111.1 | 32.0 | ||||||||||||||||||
44.5 | |||||||||||||||||||
Gray Target Models | Yellow Target Models | ||||||||||||||||||
-SVR | Random Forest | -SVR | Random Forest | ||||||||||||||||
182.8 | 77.2 | 53.7 | 40.2 | 19.1 | 270.2 | 112.7 | 71.3 | 54.5 | 19.1 | 38.1 | 63.8 | 72.7 | 36.3 | 19.3 | 48.3 | 65.1 | 48.5 | 21.7 | 10.4 |
13.1 | 40.4 | 66.3 | 21.7 | 45.4 | 55.5 | 47.7 | 24.4 | 246.2 | 133.3 | 98.8 | 62.0 | 301.4 | 191.6 | 96.7 | 47.5 | ||||
−0.2 | 80.0 | 42.2 | 45.4 | 72.4 | 59.7 | 122.1 | 147.6 | 108.1 | 260.2 | 175.7 | 117.5 | ||||||||
375.1 | 79.1 | 112.1 | 76.5 | 319.6 | 198.4 | 343.3 | 205.1 | ||||||||||||
85.1 | 137.5 | 366.1 | 328.8 | ||||||||||||||||
XGBoost | XGBoost | ||||||||||||||||||
150.5 | 96.9 | 59.0 | 35.7 | 15.1 | 25.2 | 57.7 | 50.0 | 19.4 | 16.6 | ||||||||||
38.3 | 46.0 | 51.9 | 17.5 | 334.5 | 208.7 | 108.2 | 61.7 | ||||||||||||
58.4 | 109.3 | 52.9 | 706.1 | 231.1 | 139.3 | ||||||||||||||
158.5 | 71.9 | 767.4 | 258.1 | ||||||||||||||||
146.8 | 560.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hupel, T.; Stütz, P. Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery. Sensors 2023, 23, 8025. https://doi.org/10.3390/s23198025
Hupel T, Stütz P. Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery. Sensors. 2023; 23(19):8025. https://doi.org/10.3390/s23198025
Chicago/Turabian StyleHupel, Tobias, and Peter Stütz. 2023. "Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery" Sensors 23, no. 19: 8025. https://doi.org/10.3390/s23198025
APA StyleHupel, T., & Stütz, P. (2023). Measuring and Predicting Sensor Performance for Camouflage Detection in Multispectral Imagery. Sensors, 23(19), 8025. https://doi.org/10.3390/s23198025