Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Imaging System Performance
2.2. Data Acquisition
2.2.1. Simulations
2.2.2. Experiments
2.3. Proposed Restoration Framework Based on the Adaptive PSF Estimation
Algorithm 1 Structure of proposed scheme to estimate adaptive PSF |
1: Input: Initial matrix IMG1, IMG2 |
2: Output: Complete matrix FSFσ 3: FunctionInitialize (): 4: Sigmaval = 0.01 to end (empirically); 5: Preallocation (SSIMval, FSIMval); 6: END 7: Function Main (): 8: For val = Sigmaval (start): Sigmaval (end) do 9: PSFval Input sigma in Equation (2) (val); 10: IMG1_blur = IMG1 PSFval; 11: SSIMval (val) Calculate the Equation (5) (IMG1_blur, IMG2); 12: FSIMval (val) Calculate the Equation (6) (IMG1_blur, IMG2); 13: END For 14: SSIMσ = find the index (max (SSIMval)); 15: FSIMσ = find the index (max (FSIMval)); 16: FSFσ = average (SSIMσ, FSIMσ); 17: Return FSFσ |
18: END |
2.4. Quantitative Evaluation of Image Performance
3. Results and Discussion
3.1. Simulations
3.2. Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seibert, J.A. Flat-panel detectors: How much better are they? Pediatr. Radiol. 2006, 36, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Beuville, E.J.; Belding, M.; Costello, A.N.; Hansen, R.; Petronio, S.M. High performance, low-noise, 128-channel readout integrated circuit for flat panel X-ray detector systems. In Proceedings of the SPIE 5368, Medical Imaging 2004: Physics of Medical Imaging, San Diego, CA, USA, 6 May 2004. [Google Scholar] [CrossRef]
- Aldrich, J.E.; Duran, E.; Dunlop, P.; Mayo, J.R. Optimization of dose and image quality for computed radiography and digital radiography. J. Digit. Imaging 2006, 19, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Bosmans, H.; Hauwere, A.D.; Lemmens, K.; Zanca, F.; Thierens, H.; Ongeval, C.V.; Herck, K.V.; Steen, A.V.; Martens, P.; Bleyen, L.; et al. Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography. Eur. Radiol. 2013, 23, 2891–2898. [Google Scholar] [CrossRef] [PubMed]
- James, J.; Davies, A.; Cowen, A.; O’Connor, P. Developments in digital radiography: An equipment update. Eur. Radiol. 2001, 11, 2616–2626. [Google Scholar] [CrossRef] [PubMed]
- Yaffe, M.J.; Rowlands, J.A. X-ray detectors for digital radiography. Phys. Med. Biol. 1997, 42, 1. [Google Scholar] [CrossRef] [PubMed]
- Lanca, L.; Silva, A. Digital Imaging Systems for Plain Radiography; Springer: New York, NY, USA, 2013; pp. 9–19. [Google Scholar] [CrossRef]
- Kasap, S.O.; Kabir, M.Z.; Rowlands, J.A. Recent advances in X-ray photoconductors for direct conversion X-ray image detectors. Curr. Appl. Phys. 2006, 6, 288–292. [Google Scholar] [CrossRef]
- Howansky, A.; Mishchenko, A.; Lubinsky, A.R.; Zhao, W. Comparison of CsI:Tl and Gd2O2S:Tb indirect flat panel detector X-ray imaging performance in front-and back irradiation geometries. Med. Phys. 2019, 46, 4857–4868. [Google Scholar] [CrossRef]
- Liu, X.; Xu, T.; Li, Y.; Zang, Z.; Peng, X.; Wei, H.; Zha, W.; Wang, F. Enhanced X-ray photon response in solution-synthesized CsPbBr3 nanoparticles wrapped by reduced graphene oxide. Sol. Energy Mater. Sol. Cells 2018, 187, 249–254. [Google Scholar] [CrossRef]
- Samei, E.; Flynn, M.J. An experimental comparison of detector performance for direct and indirect digital radiography systems. Med. Phys. 2003, 30, 608–622. [Google Scholar] [CrossRef]
- Swank, R.K. Absorption and noise in X-ray phosphors. J. Appl. Phys. 1973, 44, 4199–4203. [Google Scholar] [CrossRef]
- Kasap, S.; Frey, J.B.; Belev, G.; Tousignant, O.; Mani, H.; Greenspan, J.; Laperriere, L.; Bubon, O.; Reznik, A.; DeCrescenzo, G.; et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 2011, 11, 5112–5157. [Google Scholar] [CrossRef]
- Grynko, O.; Thibault, T.; Pineau, E.; Reznik, A. Engineering of a blocking layer structure for low-lag operation of the a-PbO-based X-ray detector. IEEE Trans. Electron Devices 2021, 68, 2335–2341. [Google Scholar] [CrossRef]
- Chae, K.J.; Goo, J.M.; Ahn, S.Y.; Yoo, J.Y.; Yoon, S.H. Application of deconvolution algorithm of point spread function in improving image quality: An observer preference study on chest radiography. Korean J. Radiol. 2018, 19, 147–152. [Google Scholar] [CrossRef]
- Han, B.; Park, M.; Kim, K.; Lee, Y. Characterization of flexible amorphous silicon thin-film transistor-based detectors with positive-intrinsic-negative diode in radiography. Diagnostics 2022, 12, 2103. [Google Scholar] [CrossRef]
- Huda, W.; Abrahams, R.B. X-ray-based medical imaging and resolution. Am. J. Roentgenol. 2015, 204, W393–W397. [Google Scholar] [CrossRef] [PubMed]
- Nagesh, S.V.S.; Rana, R.; Russ, M.; Ionita, C.N.; Bednarek, D.R.; Rudin, S. Focal spot deblurring for high resolution direct conversion X-ray detectors. Proc. SPIE-Int. Soc. Opt. Eng. 2016, 9783, 97833R. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, Chapter 5: Image Restoration and Reconstruction, 3rd ed.; Pearson Education: Sydney, Australia, 2009; pp. 311–350. [Google Scholar]
- Samei, E.; Flynn, M.J.; Reimann, D.A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device. Med. Phys. 1998, 25, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Moy, J.P. Signal-to-noise ratio and spatial resolution in X-ray electronic imagers: Is the MTF a relevant parameters? Med. Phys. 2000, 27, 86–93. [Google Scholar] [CrossRef]
- Donini, B.; Rivetti, S.; Lanconelli, N.; Bertolini, M. Free software for performing physical analysis of systems for digital radiography and mammography. Med. Phys. 2014, 41, 051903. [Google Scholar] [CrossRef]
- Konstantinidis, A.; Martini, N.; Koukou, V.; Fountos, G.; Kalyvas, N.; Valais, I.; Michail, C. RAD_IQ: A free software for characterization of digital X-ray imaging devices based on the novel IEC 62220-1-1:2015 International Standard. J. Phys. Conf. Ser. 2021, 2090, 012107. [Google Scholar] [CrossRef]
- IEC 62220-1-1:2015; Medical Electrical Equipment—Characteristics of Digital X-ray Imaging Devices—Part 1-1: Determination of the Detective Quantum Efficiency—Detectors Used in Radiographic Imaging. International Electrotechnical Commission: Geneva, Switzerland, 2015.
- Michail, C.; Valais, I.; Martini, N.; Koukou, V.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Fountos, G. Determination of the detective quantum efficiency (DQE) of CMOS/CsI imaging detectors following the novel IEC 62220-1-1:2015 International standard. Radiat. Meas. 2016, 94, 8–17. [Google Scholar] [CrossRef]
- Linardatos, D.; Koukou, V.; Martini, N.; Konstantinidis, A.; Bakas, A.; Fountos, G.; Valais, I.; Michail, C. On the response of a micro non-destructive testing X-ray detector. Materials 2021, 14, 888. [Google Scholar] [CrossRef] [PubMed]
- Banham, M.R.; Katsaggelos, A.K. Digital image restoration. IEEE Signal Process. Mag. 1997, 14, 24–41. [Google Scholar] [CrossRef]
- Samarasinghe, P.D.; Kennedy, R.A.; Li, H. On non-blind image restoration. In Proceedings of the 2009 3rd International Conference on Signal Processing and Communication Systems, Omaha, NE, USA, 28–30 September 2009. [Google Scholar] [CrossRef]
- Biggs, D.S.C.; Andrews, M. Acceleration of iterative image restoration algorithms. Appl. Opt. 1997, 36, 1766–1775. [Google Scholar] [CrossRef]
- Chen, H.; Cen, Z.; Wang, C.; Lan, S.; Li, X. Image restoration via improved wiener filter applied to optical sparse aperture systems. Optik 2017, 147, 350–359. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J.-M. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, W.; Wang, Z.; Hou, Q. Satellite image deconvolution based on nonlocal means. Appl. Opt. 2010, 49, 6286–6294. [Google Scholar] [CrossRef]
- Schmidt, U.; Schelten, K.; Roth, S. Bayesian deblurring with integrated noise estimation. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011. [Google Scholar] [CrossRef]
- Schmidt, U.; Rother, C.; Nowozin, S.; Jancsary, J.; Roth, S. Discriminative non-blind deblurring. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar] [CrossRef]
- Daniel, Z.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the 2011 IEEE Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011. [Google Scholar] [CrossRef]
- Sun, L.; Cho, S.; Wang, J.; Hays, J. Good image priors for non-blind deconvolution. In Proceedings of the European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 231–246. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, J.; Lai, W.-S.; Lau, R.W.H.; Yang, M.-H. Learning fully convolutional networks for iterative non-blind deconvolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Schuler, C.; Burger, H.C.; Harmeling, S.; Scholkopf, B. A machine learning approach for non-blind image deconvolution. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [Google Scholar] [CrossRef]
- Quan, Y.; Chen, Z.; Zheng, H.; Ji, H. Learning deep non-blind image deconvolution without ground truths. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 642–659. [Google Scholar] [CrossRef]
- Son, H.; Lee, S. Fast non-blind deconvolution via regularized residual networks with long/short skip-connections. In Proceedings of the 2017 IEEE International Conference on Computational Photography (ICCP), Stanford, CA, USA, 12–14 May 2017. [Google Scholar] [CrossRef]
- Tao, S.; Dong, W.; Tang, Z.; Wang, Q. Fast non-blind deconvolution method for blurred image corrupted by Poisson noise. In Proceedings of the 2017 International Conference on Progress in Informatics and Computing (PIC), Nanjing, China, 15–17 December 2017. [Google Scholar] [CrossRef]
- Figueiredo, M.A.; Bioucas-Dias, J.M. Restoration of Poissonian images using althernating direction optimization. IEEE Trans. Image Process. 2010, 19, 3133–3145. [Google Scholar] [CrossRef]
- Tao, S.; Dong, W.; Xu, Z.; Tang, Z. Fast total variation deconvolution for blurred image contaminated by Poisson noise. J. Vis. Commun. Image Represent. 2016, 38, 582–594. [Google Scholar] [CrossRef]
- Ren, D.; Zuo, W.; Zhang, D.; Xu, J.; Zhang, L. Partial deconvolution with inaccurate blur kernel. IEEE Trans. Image Process. 2018, 27, 511–524. [Google Scholar] [CrossRef]
- Rodriguez, P. Total variation regularization algorithms for images corrupted with different noise models: A review. J. Electr. Comput. Eng. 2013, 2013, 217021. [Google Scholar] [CrossRef]
- Lu, H.; Wei, J.; Liu, Q.; Wang, Y.; Deng, X. A dictionary learning method with total generalized variation for MRI reconstruction. Int. J. Biomed. Imaging 2016, 2016, 7512471. [Google Scholar] [CrossRef] [PubMed]
- Knoll, F.; Bredies, K.; Pock, T.; Stollberger, R. Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 2011, 65, 480–491. [Google Scholar] [CrossRef]
- Lee, M.-H.; Yun, C.-S.; Kim, K.; Lee, Y.; The Alzheimer Disease Neuroimaging Initative. Image restoration algorithm incorporating methods to remove noise and blurring from positron emission tomography imaging for Alzheimer’s disease diagnosis. Phys. Medica 2022, 103, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Buhr, E.; Gunther-Kohfahl, S.; Neitzel, U. Accuracy of a simple method for deriving the presampled modulation transfer function of a digital radiographic system from an edge image. Med. Phys. 2003, 30, 2323–2331. [Google Scholar] [CrossRef]
- Dobbins, J.T., III; Samei, E.; Ranger, N.T.; Chen, Y. Intercomparison of methods for image quality characterization. II. Noise power spectrum. Med. Phys. 2006, 33, 1466–1475. [Google Scholar] [CrossRef]
- Foi, A.; Trimeche, M.; Katkovnik, V.; Egiazarian, K. Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 2008, 17, 1737–1754. [Google Scholar] [CrossRef] [PubMed]
- Luisier, F.; Blu, T.; Unser, M. Image denoising in mixed Poisson-Gaussian noise. IEEE Trans. Image Process. 2011, 20, 696–708. [Google Scholar] [CrossRef]
- Ding, Q.; Long, Y.; Zhang, X.; Fessler, J.A. Statistical image reconstruction using mixed Poisson-Gaussian noise model for X-ray CT. arXiv 2018. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.S.; Kang, M.G. Poisson-Gaussian noise analysis and estimation for low-dose X-ray images in the NSCT domain. Sensors 2018, 18, 1019. [Google Scholar] [CrossRef]
- Sutour, C.; Deledalle, C.-A.; Aujol, J.-F. Estimation of the noise level function based on a nonparametric detection of homogeneous image regions. SIAM J. Imaging Sci. 2015, 8, 2622–2661. [Google Scholar] [CrossRef]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Kendall, M.G. The treatment of ties in ranking problems. Biometrika 1945, 33, 239–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Chan, S.H.; Khoshabeh, R.; Gibson, K.B.; Gill, P.E.; Nguyen, T.Q. An augmented lagrangian method for video restortaion. IEEE Trans. Image Process. 2011, 20, 3097–3111. [Google Scholar] [CrossRef] [PubMed]
- Koutalonis, M.; Delis, H.; Spyrou, G.; Costaridou, L.; Tzanakos, G.; Panayiotakis, G. Contrast-to-noise ratio in magnification mammography: A monte carlo study. Phys. Med. Biol. 2007, 52, 3185. [Google Scholar] [CrossRef]
- Kesarwani, A.; Purohit, K.; Dalui, M.; Kisku, D.R. Measuring the degree of suitability of edge detection operators prior to an application. In Proceedings of the 2020 IEEE Applied Signal Processing Conference (ASPCON), Kolkata, India, 7–9 October 2020. [Google Scholar] [CrossRef]
- Jayavel, A.; Gopinath, S.; Angamuthu, P.P.; Arockiaraj, F.G.; Bleahu, A.; Xavier, A.P.; Smith, D.; Han, M.; Slobozhan, I.; Ng, S.H.; et al. Improved classification of blurred images with deep-learning networks using lucy-richardson-rosen algorithm. Photonics 2023, 10, 396. [Google Scholar] [CrossRef]
- Chen, Q.; Montesinos, P.; Sun, Q.S.; Heng, P.A.; Xia, D.S. Adaptive total variation denoising based on difference curvature. Image Vis. Comput. 2010, 28, 298–306. [Google Scholar] [CrossRef]
- Seo, K.-H.; Kang, S.-H.; Shim, J.; Lee, Y. Optimization of smoothing factor for fast non-local means algorithm in high pitch based low-dose computed tomography images with tin-filter. Radiat. Phys. Chem. 2023, 206, 110762. [Google Scholar] [CrossRef]
- Johns, P.C.; Yaffe, M. Scattered radiation in fan beam imaging systems. Med. Phys. 1982, 9, 231–239. [Google Scholar] [CrossRef]
- Smith, S.W.; Kruger, R.A. A signal processing model of diagnostic X-ray scatter. Med. Phys. 1986, 13, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.M.; Lindfors, K.K.; Cooper III, V.N.; Seibert, J.A. Scatter/primary in mammography: Comprehensive results. Med. Phys. 2000, 27, 2408–2416. [Google Scholar] [CrossRef] [PubMed]
- Boone, J.M.; Seibert, J.A. An analytical model of the scattered radiation distribution in diagnostic radiology. Med. Phys. 1988, 15, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Mohan, R.; Zhu, X.R. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging. Phys. Med. Biol. 2008, 53, 6729–6748. [Google Scholar] [CrossRef] [PubMed]
- Monnin, P.; Verdun, F.R.; Bosmans, H.; Perez, S.R.; Marshall, N.W. A comprehensive model for X-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation. Phys. Med. Biol. 2017, 62, 5691–5722. [Google Scholar] [CrossRef]
Name | Scintillator Thickness (μm) | Pixel Size (μm) | Pixel Matrix (Pixels) | ADC | of LSF (Pixels) |
---|---|---|---|---|---|
Detector 1 | 84 | 48 | 512 × 1024 | 12-bit | 1.79 |
Detector 2 | 96 | 48 | 512 × 1024 | 12-bit | 2.61 |
Detector 3 | 140 | 48 | 512 × 1024 | 12-bit | 5.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, B.K.; Lee, Y.; Kim, K. Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging. Sensors 2023, 23, 8185. https://doi.org/10.3390/s23198185
Cha BK, Lee Y, Kim K. Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging. Sensors. 2023; 23(19):8185. https://doi.org/10.3390/s23198185
Chicago/Turabian StyleCha, Bo Kyung, Youngjin Lee, and Kyuseok Kim. 2023. "Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging" Sensors 23, no. 19: 8185. https://doi.org/10.3390/s23198185
APA StyleCha, B. K., Lee, Y., & Kim, K. (2023). Development of Adaptive Point-Spread Function Estimation Method in Various Scintillation Detector Thickness for X-ray Imaging. Sensors, 23(19), 8185. https://doi.org/10.3390/s23198185