Advancements in Passive Wireless Sensors, Materials, Devices, and Applications
Abstract
:1. Introduction
2. Passive Wireless Sensor Classification and Principle
2.1. RFID Sensor
2.2. Harmonic Scattering Sensor
2.3. Self-Powered Sensor
2.4. Passive Resonance Type
3. Passive Wireless Sensor Manufacturing Materials and Manufacturing Technology
3.1. Temperature Sensors
3.2. Humidity Sensors
3.3. Pressure Sensors
3.4. Gas Sensors
3.5. Biosensors
4. Passive Wireless Sensor Types and Optimization
5. Self-Powered Wireless Sensor Energy Harvesting Devices
5.1. Algorithms
5.2. PiENG
5.3. PyENG
5.4. TENG
6. Passive Wireless Sensor Applications
6.1. Structural Safety Testing
6.2. Human Health Testing
6.3. Safety Testing of Commonly Used Equipment
7. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, C.; Pu, Y.; Yang, F.; Zhao, R.; Alrawais, A.; Xiang, T. Secure and Efficient Data Collection and Storage of IoT in Smart Ocean. IEEE Internet Things J. 2020, 7, 9980–9994. [Google Scholar] [CrossRef]
- Shao, Y.; Wei, L.; Wu, X.; Jiang, C.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J.; Ying, Y.; Zhang, C.J.; et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 13, 3223. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Fu, Z.; Zhang, S.; Wang, M.; Pan, X. Experimental Investigation of Reynolds Number and Spring Stiffness Effects on Vortex-Induced Vibration Driven Wind Energy Harvesting Triboelectric Nanogenerator. Nanomaterials 2022, 12, 3595. [Google Scholar] [CrossRef] [PubMed]
- Booth, B.M.; Mundnich, K.; Feng, T.; Nadarajan, A.; Falk, T.H.; Villatte, J.L.; Ferrara, E.; Narayanan, S. Multimodal Human and Environmental Sensing for Longitudinal Behavioral Studies in Naturalistic Settings: Framework for Sensor Selection, Deployment, and Management. J. Med. Internet Res. 2019, 21, e12832. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Melzer, M.; Karnaushenko, D.; Uemura, T.; Yoshimoto, S.; Akiyama, M.; Noda, Y.; Araki, T.; Schmidt, O.G.; Sekitani, T. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Sci. Adv. 2020, 6, eaay6094. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Cheng, R.; Shen, S.; Yi, J.; Peng, X.; Ning, C.; Dong, K.; Wang, Z.L. Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research 2022, 2022, 9809406. [Google Scholar] [CrossRef] [PubMed]
- Brocato, R.W. Passive Wireless Sensor Tags; Sandia National Laboratories: Albuquerque, NM, USA, 2022.
- Majed, N.; Islam, M.A.S. Contaminant Discharge from Outfalls and Subsequent Aquatic Ecological Risks in the River Systems in Dhaka City: Extent of Waste Load Contribution in Pollution. Front. Public Health 2022, 10, 880399. [Google Scholar] [CrossRef]
- Sacks, T. Multi-Function Passive Wireless Sensor Is ‘The World’s Smallest’; Drives & Controls: Tonbridge, UK, 2022; Volume 38. [Google Scholar]
- Darwish, A.; Hassanien, A.E. Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 2011, 11, 5561–5595. [Google Scholar] [CrossRef]
- Schwiebert, L.; Gupta, S.K.; Weinmann, J. Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, Rome, Italy, 16 July 2001; pp. 151–165. [Google Scholar]
- Tan, E.L.; Ng, W.N.; Shao, R.; Pereles, B.D.; Ong, K.G. A wireless, passive sensor for quantifying packaged food quality. Sensors 2007, 7, 1747–1756. [Google Scholar] [CrossRef]
- Arpin, K.A.; Losego, M.D.; Cloud, A.N.; Ning, H.; Mallek, J.; Sergeant, N.P.; Zhu, L.; Yu, Z.; Kalanyan, B.; Parsons, G.N.; et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 2013, 4, 2630. [Google Scholar] [CrossRef]
- Byrne, R.; Diamond, D. Chemo/bio-sensor networks. Nat. Mater. 2006, 5, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Preechaburana, P.; Gonzalez, M.C.; Suska, A.; Filippini, D. Surface plasmon resonance chemical sensing on cell phones. Angew. Chem. Int. Ed. Engl. 2012, 51, 11585–11588. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Xiao, X.; Deng, W.; Nashalian, A.; He, D.; Raveendran, V.; Yan, C.; Su, H.; Chu, X.; Yang, T.; et al. Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Lett. 2020, 20, 6404–6411. [Google Scholar] [CrossRef] [PubMed]
- AlTakroori, H.H.D.; Ali, A.; Greish, Y.E.; Qamhieh, N.; Mahmoud, S.T. Organic/Inorganic-Based Flexible Membrane for a Room-Temperature Electronic Gas Sensor. Nanomaterials 2022, 12, 2037. [Google Scholar] [CrossRef]
- Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [Google Scholar] [CrossRef]
- Verma, G.; Mondal, K.; Gupta, A. Si-based MEMS Resonant Sensor: A Review from Microfabrication Perspective. Microelectron. J. 2021, 118, 105210. [Google Scholar] [CrossRef]
- Zhao, G.; Xue, Y.; Wang, Y.; Yin, Y.; Chen, Q.; Li, J. Electroplating process and its application in MEMS technology. Telem. Remote Control 2022, 43, 12. [Google Scholar]
- Lu, Y.; Jiang, L.; Yu, Y.; Wang, D.; Sun, W.; Liu, Y.; Yu, J.; Zhang, J.; Wang, K.; Hu, H.; et al. Liquid-liquid triboelectric nanogenerator based on the immiscible interface of an aqueous two-phase system. Nat. Commun. 2022, 13, 5316. [Google Scholar] [CrossRef]
- Song, Y.; Min, J.; Yu, Y.; Wang, H.; Yang, Y.; Zhang, H.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842. [Google Scholar] [CrossRef]
- Tan, P.; Xi, Y.; Chao, S.; Jiang, D.; Liu, Z.; Fan, Y.; Li, Z. An Artificial Intelligence-Enhanced Blood Pressure Monitor Wristband Based on Piezoelectric Nanogenerator. Biosensors 2022, 12, 234. [Google Scholar] [CrossRef]
- Viikari, V.; Song, J.; Pesonen, N.; Pursula, P.; Seppä, H. Review of passive wireless sensors utilizing the intermodulation communication. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 8–9 September 2014; pp. 56–61. [Google Scholar]
- Endo, N.; Ujita, W.; Fujiwara, M.; Miyauchi, H.; Mishima, H.; Makino, Y.; Hashimoto, L.; Oyama, H.; Makinodan, M.; Nishi, M.; et al. Multiple animal positioning system shows that socially-reared mice influence the social proximity of isolation-reared cagemates. Commun. Biol. 2018, 1, 225. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Duan, G.; Zhao, X.; Chen, C.; Anderson, S.W.; Zhang, X. Metamaterial-enhanced near-field readout platform for passive microsensor tags. Microsyst. Nanoeng. 2022, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Breton, M.L.; Liébault, F.; Baillet, L.; Charléty, A.; Larose, R.; Tedjini, S. Dense and long-term monitoring of Earth surface processes with passive RFID—A review. Earth-Sci. Rev. 2022, 234, 104225. [Google Scholar] [CrossRef]
- Newman-Casey, P.A.; Musser, J.; Niziol, L.M.; Shedden, K.; Burke, D.; Cohn, A. Designing and validating a low-cost real time locating system to continuously assess patient wait times. J. Biomed. Inform. 2020, 106, 103428. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Pan, K.; Nemitz, M.P.; Song, R.; Hu, Z.; Stokes, A.A. Soft Radio-Frequency Identification Sensors: Wireless Long-Range Strain Sensors Using Radio-Frequency Identification. Soft Robot. 2019, 6, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Tsou, C.; Huang, P.W. Ultra-high-frequency radio-frequency-identification baseband processor design for bio-signal acquisition and wireless transmission in healthcare system. IEEE Trans. Consum. Electron. 2020, 66, 77–86. [Google Scholar] [CrossRef]
- Zid, M.B.; Raoof, K.; Bouallegue, A.; Ammar, B. Sensor nodes selection in wireless sensor networks over a rich scattering environment. In Proceedings of the 2011 International Conference on Communications, Computing and Control Applications (CCCA), Hammamet, Tunisia, 3–5 March 2011. [Google Scholar]
- Huang, G. A Crack Detection Technique Using Piezoelectric Actuator/Sensor Systems; University of Alberta: Edmonton, AB, Canada, 2004. [Google Scholar]
- Renfro, M.W.; Jordan, E.H. Development of Sensors Using Evanescent Wave Interactions in Sapphire Optical Fibers; University of Connecticut: Storrs, CT, USA, 2006. [Google Scholar]
- Van Schuylenbergh, K.; Puers, R. Passive telemetry by harmonics detection. In Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam, The Netherlands, 31 October–3 November 1996; pp. 299–300. [Google Scholar]
- Pursula, P.; Flak, J.; Pesonen, N.; Saarela, O. Intermodulation communication principle: Passive wireless sensor networks for internet-of-things. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 1012–1015. [Google Scholar]
- Zhang, K.; Wang, S.; Yang, Y. A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 2017, 7, 1601852. [Google Scholar] [CrossRef]
- Bhadra, J.; Ponnamma, D.; Alkareem, A.; Parangusan, H.; Ahmad, Z.; Al-Thani, N.; Daifalla, A.K.; Al-Sanari, N.A.; Mohamed, R. Development of a piezoelectric nanogenerator based on mesoporous silica/zinc oxide hybrid nanocomposite fibres. Int. J. Energy Res. 2022, 46, 8503–8515. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, H.; Li, A.; Fang, W.; Cai, Z.; Li, M.; Feng, X.; Song, Y. Breaking the symmetry to suppress the Plateau-Rayleigh instability and optimize hydropower utilization. Nat. Commun. 2021, 12, 6899. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Mandal, D. Design strategy and innovation in piezo-and pyroelectric nanogenerators. In Nanobatteries and Nanogenerators; Elsevier: Amsterdam, The Netherlands, 2021; pp. 555–585. [Google Scholar]
- Fan, Z.; Zhang, Y.; Pan, L.; Ouyang, J.; Zhang, Q. Recent developments in flexible thermoelectrics: From materials to devices. Renew. Sustain. Energy Rev. 2021, 137, 110448. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Yang, Y. Design, Performance, and Application of Thermoelectric Nanogenerators. Small 2019, 15, 1805241. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Zhu, G.; Jing, Q. Triboelectric Nanogenerator; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Yang, J.; Chen, J.; Yang, Y.; Zhang, H.; Wang, Z.L. Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. Adv. Energy Mater. 2014, 4, 1301322. [Google Scholar] [CrossRef]
- Koay, J.S.C.; Gan, W.C.; Soh, A.E.; Cheong, J.Y.; Aw, K.C.; Velayutham, T.S. An overlapped electron-cloud model for the contact electrification in piezo-assisted triboelectric nanogenerators via control of piezoelectric polarization. J. Mater. Chem. A 2020, 8, 25857–25866. [Google Scholar] [CrossRef]
- Zou, Y.; Xu, J.; Chen, K.; Chen, J. Triboelectric Nanogenerators: Advances in Nanostructures for High-Performance Triboelectric Nanogenerators (Adv. Mater. Technol. 3/2021). Adv. Mater. Technol. 2021, 6, 2170016. [Google Scholar] [CrossRef]
- Basiri-Esfahani, S.; Armin, A.; Forstner, S.; Bowen, W.P. Precision ultrasound sensing on a chip. Nat. Commun. 2019, 10, 132. [Google Scholar] [CrossRef]
- Herbert, R.; Mishra, S.; Lim, H.R.; Yoo, H.; Yeo, W.H. Fully Printed, Wireless, Stretchable Implantable Biosystem toward Batteryless, Real-Time Monitoring of Cerebral Aneurysm Hemodynamics. Adv. Sci. 2019, 6, 1901034. [Google Scholar] [CrossRef] [PubMed]
- Noyce, S.G.; Vanfleet, R.R.; Craighead, H.G.; Davis, R.C. High surface-area carbon microcantilevers. Nanoscale Adv. 2019, 1, 1148–1154. [Google Scholar] [CrossRef]
- Ferrari, M.; Baù, M.; Masud, M.; Ferrari, V. A Time-gated Contactless Interrogation System for Frequency and Quality Factor Tracking in QCR to Investigate on Liquid Solution Microdroplets. Procedia Eng. 2016, 168, 704–707. [Google Scholar] [CrossRef]
- Fan, S.C. Resonant Sensor (Chinese Edition); Beijing University of Aeronautics and Astronautics Press: Beijing, China, 2013. [Google Scholar]
- Ballantine, D., Jr.; White, R.M.; Martin, S.J.; Ricco, A.J.; Zellers, E.; Frye, G.; Wohltjen, H. Acoustic Wave Sensors: Theory, Design and Physico-Chemical Applications; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Mohammad, I.; Huang, H. Shear sensing based on a microstrip patch antenna. Meas. Sci. Technol. 2012, 23, 105705. [Google Scholar] [CrossRef]
- Ong, K.G.; Grimes, C.A. A resonant printed-circuit sensor for remote query monitoring of environmental parameters. Smart Mater. Struct. 2000, 9, 421. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Pan, B.; Kim, S.-H.; Liu, Z.; Tentzeris, M.M.; Papapolymerou, J.; Allen, M.G. RF evanescent-mode cavity resonator for passive wireless sensor applications. Sens. Actuators A Phys. 2010, 161, 322–328. [Google Scholar] [CrossRef]
- Guoxia, S.; Xiangyu, G.; Naiqiu, S. GIS conductor temperature inspection method and device based on fiber bragg grating. Trans. China Electrotech. Soc. 2015, 30, 316–321. [Google Scholar]
- Wu, S.B.; Zheng, Y.; Chen, Z.B. An on-line monitoring scheme of conductor temperature in GIS based on infrared temperature measurement. High Volt. Appar. 2009, 45, 100–102. [Google Scholar]
- Ma, G.-M.; Wu, Z.; Zhou, H.-Y.; Jiang, J.; Chen, W.-X.; Zheng, S.-S.; Li, C.-R.; Li, X.; Wang, Z.-B. A wireless and passive online temperature monitoring system for GIS based on surface-acoustic-wave sensor. IEEE Trans. Power Deliv. 2015, 31, 1270–1280. [Google Scholar] [CrossRef]
- Li, C.; Tan, Q.; Zhang, W.; Xue, C.; Xiong, J. An Embedded Passive Resonant Sensor Using Frequency Diversity Technology for High-Temperature Wireless Measurement. IEEE Sens. J. 2015, 15, 1055–1060. [Google Scholar]
- Shakoor, K.R.I. Design, simulation and testing of electrostatic SOI MUMPs based microgripper integrated with capacitive contact sensor. Sens. Actuators A Phys. 2011, 167, 44–53. [Google Scholar]
- Wang, Y.; Jia, Y.; Chen, Q.; Wang, Y. A passive wireless temperature sensor for harsh environment applications. Sensors 2008, 8, 7982–7995. [Google Scholar] [CrossRef]
- Ren, Q.Y.; Wang, L.F.; Huang, Q.A. Parallel capacitive temperature micro-sensor for passive wireless sensing applications. Electron. Lett. 2016, 52, 1345–1347. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Z.; Wang, Y.; Chen, L.; Tuan, Z.; Cai, D.; Jia, D.; Zhou, Y. Research and application progress of hexagonal boron nitride (h-BN) based composite ceramics. Mater. China 2015, 34, 770–782. [Google Scholar]
- Zhang, P.; Jia, D.; Yang, Z.; Duan, X.; Zhou, Y. Progress of a novel non-oxide Si-BCN ceramic and its matrix composites. J. Adv. Ceram. 2012, 1, 157–178. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W.; Xu, J.; Zhu, J.; Cong, M. Conductivity of SiCNO-BN composite ceramics and their application in wireless passive temperature sensor. Ceram. Int. 2021, 47, 14490–14497. [Google Scholar] [CrossRef]
- Varadharajan Idhaiam, K.S.; Caswell, J.A.; Pozo, P.D.; Sabolsky, K.; Sierros, K.A.; Reynolds, D.S.; Sabolsky, E.M. All-Ceramic Passive Wireless Temperature Sensor Realized by Tin-Doped Indium Oxide (ITO) Electrodes for Harsh Environment Applications. Sensors 2022, 22, 2165. [Google Scholar] [CrossRef]
- Feng, Y.; Su, X.; Chen, Y.; Liu, Y.; Zhao, X.; Lu, C.; Ma, Y.; Lu, G.; Ma, M. Research progress of graphene oxide-based magnetic composites in adsorption and photocatalytic degradation of pollutants: A review. Mater. Res. Bull. 2023, 162, 112207. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, T.; Zhu, C.; Zhai, Y.; Wang, D.; Dong, S. One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Res. 2010, 3, 794–799. [Google Scholar] [CrossRef]
- Fernandez-Salmeron, J.; Rivadeneyra, A.; Rodríguez, M.A.C.; Capitan-Vallvey, L.F.; Palma, A.J. HF RFID tag as humidity sensor: Two different approaches. IEEE Sens. J. 2015, 15, 5726–5733. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.-F.; Huang, J.-Q.; Huang, Q.-A. An LC-type passive wireless humidity sensor system with portable telemetry unit. J. Microelectromech. Syst. 2014, 24, 575–581. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Peng, T.; Yang, J.; Ren, Y.; Ma, J.; Tang, G.; Wang, L.; Huang, S. High selectivity humidity sensors of functionalized graphite oxide with more epoxy groups. Appl. Surf. Sci. 2020, 503, 144312. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, F. Application of graphene/graphene oxide in biomedicine and biotechnology. Curr. Med. Chem. 2014, 21, 855–869. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, T.; Qi, R.; Dai, J.; Liu, S.; Fei, T.; Lu, G. Humidity sensor based on solution processible microporous silica nanoparticles. Sens. Actuators B Chem. 2018, 266, 131–138. [Google Scholar] [CrossRef]
- Haque, R.; Wise, K. A 3D implantable microsystem for intraocular pressure monitoring using a glass-in-silicon reflow process. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 995–998. [Google Scholar]
- Chitnis, G.; Ziaie, B. A ferrofluid-based wireless pressure sensor. J. Micromech. Microeng. 2013, 23, 125031. [Google Scholar] [CrossRef]
- Katyba, G.M.; Zaytsev, K.I.; Chernomyrdin, N.V.; Shikunova, I.A.; Komandin, G.A.; Anzin, V.B.; Lebedev, S.P.; Spektor, I.E.; Karasik, V.E.; Yurchenko, S.O. Sapphire photonic crystal waveguides for terahertz sensing in aggressive environments. Adv. Opt. Mater. 2018, 6, 1800573. [Google Scholar] [CrossRef]
- Khattak, C.P.; Schmid, F. Growth of the world’s largest sapphire crystals. J. Cryst. Growth 2001, 225, 572–579. [Google Scholar] [CrossRef]
- Rogers, J.E.; Yoon, Y.-K.; Sheplak, M.; Judy, J.W. A passive wireless microelectromechanical pressure sensor for harsh environments. J. Microelectromech. Syst. 2017, 27, 73–85. [Google Scholar] [CrossRef]
- Kou, H.; Zhang, L.; Tan, Q.; Liu, G.; Lv, W.; Lu, F.; Dong, H.; Xiong, J. Wireless flexible pressure sensor based on micro-patterned Graphene/PDMS composite. Sens. Actuators A Phys. 2018, 277, 150–156. [Google Scholar] [CrossRef]
- Li, S.; Liang, T.; Wang, W.; Hong, Y.; Zheng, T.; Xiong, J. A novel SOI pressure sensor for high temperature application. J. Semicond. 2015, 36, 014014. [Google Scholar] [CrossRef]
- Tong, X.C. Functional Metamaterials and Metadevices; Springer: Berlin/Heidelberg, Germany, 2018; Volume 110. [Google Scholar]
- Xuan, W.; Chen, J.; Wu, T.; Chen, J.; Huang, X.; Dong, S.; Wang, X.; Jin, H.; Luo, J. Bulk acoustic wave resonator based wireless and passive pressure sensor. Vacuum 2020, 178, 109433. [Google Scholar] [CrossRef]
- Manesh, K.; Santhosh, P.; Gopalan, A.; Lee, K.-P. Electrospun poly (vinylidene fluoride)/poly (aminophenylboronic acid) composite nanofibrous membrane as a novel glucose sensor. Anal. Biochem. 2007, 360, 189–195. [Google Scholar] [CrossRef]
- Saikia, D.; Chen-Yang, Y.; Chen, Y.; Li, Y.; Lin, S. Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery. Desalination 2008, 234, 24–32. [Google Scholar] [CrossRef]
- Saikia, D.; Kumar, A. Ionic transport in P (VDF-HFP)–PMMA–LiCF3SO3–(PC+DEC)–SiO2 composite gel polymer electrolyte. Eur. Polym. J. 2005, 41, 563–568. [Google Scholar] [CrossRef]
- Kebabian, P.L.; Freedman, A. Fluoropolymer-based capacitive carbon dioxide sensor. Meas. Sci. Technol. 2006, 17, 703. [Google Scholar] [CrossRef]
- Zhang, L.; Rahimabady, M.; Tan, S.Y.; Tan, C.Y.; Chen, S.; Chen, Y.F.; Yao, K.; Humbert, A.; Soccol, D.; Zang, K. P (VDF-HFP) polymer as sensing material for capacitive carbon dioxide sensors. IEEE Sens. J. 2017, 17, 4349–4356. [Google Scholar] [CrossRef]
- Ma, M.; Liu, Z.; Shan, W.; Li, Y.; Kalantar-zadeh, K.; Wlodarski, W. Passive wireless gas sensors based on the LTCC technique. In Proceedings of the 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, China, 1–3 July 2015; pp. 1–3. [Google Scholar]
- Van Hoang, N.; Hung, C.M.; Hoa, N.D.; Van Duy, N.; Park, I.; Van Hieu, N. Excellent detection of H2S gas at ppb concentrations using ZnFe2O4 nanofibers loaded with reduced graphene oxide. Sens. Actuators B Chem. 2019, 282, 876–884. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Nematov, S.; Sberveglieri, G. Investigation of reduced graphene oxide and a Nb-doped TiO2 nanotube hybrid structure to improve the gas-sensing response and selectivity. ACS Sens. 2019, 4, 2094–2100. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Z. Recent advances in polysaccharide-based hydrogels for synthesis and applications. Aggregate 2021, 2, e21. [Google Scholar] [CrossRef]
- Dautta, M.; Alshetaiwi, M.; Escobar, J.; Tseng, P. Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosens. Bioelectron. 2020, 151, 112004. [Google Scholar] [CrossRef]
- Kalimuthu, P.; Gonzalez-Martinez, J.F.; Ruzgas, T.; Sotres, J. Highly stable passive wireless sensor for protease activity based on fatty acid-coupled gelatin composite films. Anal. Chem. 2020, 92, 13110–13117. [Google Scholar] [CrossRef]
- Yazdani, M.; Thomson, D.J.; Kordi, B. Passive wireless sensor for measuring AC electric field in the vicinity of high-voltage apparatus. IEEE Trans. Ind. Electron. 2016, 63, 4432–4441. [Google Scholar] [CrossRef]
- Alipour, A.; Unal, E.; Gokyar, S.; Demir, H.V. Development of a distance-independent wireless passive RF resonator sensor and a new telemetric measurement technique for wireless strain monitoring. Sens. Actuators A Phys. 2017, 255, 87–93. [Google Scholar] [CrossRef]
- Babu, A.; George, B. An efficient readout scheme for simultaneous measurement from multiple wireless passive LC sensors. IEEE Trans. Instrum. Meas. 2017, 67, 1161–1168. [Google Scholar] [CrossRef]
- da Silva Hack, P.; ten Caten, C.S. Measurement uncertainty: Literature review and research trends. IEEE Trans. Instrum. Meas. 2012, 61, 2116–2124. [Google Scholar] [CrossRef]
- Vincent, D.; Sang, P.H.; Williamson, S.S. Feasibility study of hybrid inductive and capacitive wireless power transfer for future transportation. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; pp. 229–233. [Google Scholar]
- Liana, D.D.; Raguse, B.; Gooding, J.J.; Chow, E. Recent advances in paper-based sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, G.Y.; Marindra, A.M.; Sunny, A.I.; Zhao, A.B. A review of passive RFID tag antenna-based sensors and systems for structural health monitoring applications. Sensors 2017, 17, 265. [Google Scholar] [CrossRef] [PubMed]
- Sunny, A.I.; Zhang, J.; Tian, G.Y.; Tang, C.; Rafique, W.; Zhao, A.; Fan, M. Temperature independent defect monitoring using passive wireless RFID sensing system. IEEE Sens. J. 2018, 19, 1525–1532. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Gao, J.; Luo, J.; Tao, R.; Fu, C.; Xu, L. A multi-iteration enhanced 2P-SMA method for improved error reduction on a WP-SAW water temperature and pressure sensor. IEEE Access 2021, 9, 48236–48243. [Google Scholar] [CrossRef]
- Kubina, B.; Mandel, C.; Schüßler, M.; Jakoby, R. Compact quasi-chipless harmonic radar sensor with a dielectric resonator antenna. In Proceedings of the 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015; pp. 1–3. [Google Scholar]
- Yu, S.-M.; Feng, P.; Wu, N.-J. Passive and semi-passive wireless temperature and humidity sensors based on epc generation-2 uhf protocol. IEEE Sens. J. 2014, 15, 2403–2411. [Google Scholar] [CrossRef]
- Tang, D.; Wang, L.F.; Huang, Q.A. Passive Wireless Multi-parameter Sensor System for Hermetic Environment Monitoring. Key Eng. Mater. 2015, 645–646, 583–588. [Google Scholar] [CrossRef]
- Choo, J.H.; Hong, C.P.; Lim, J.Y.; Seo, J.A.; Kim, Y.S.; Lee, D.W.; Park, S.G.; Lee, G.W.; Carroll, E.; Lee, Y.W. Whole-genome de novo sequencing, combined with RNA-Seq analysis, reveals unique genome and physiological features of the amylolytic yeast Saccharomycopsis fibuligera and its interspecies hybrid. Biotechnol. Biofuels 2016, 9, 246. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, H.; Zhao, F.; Yuan, D. Secure transmission and self-energy recycling with partial eavesdropper CSI. IEEE J. Sel. Areas Commun. 2018, 36, 1531–1543. [Google Scholar] [CrossRef]
- Hajizadegan, M.; Sakhdari, M.; Zhu, L.; Cui, Q.; Huang, H.; Cheng, M.M.; Hung, J.C.; Chen, P.-Y. Graphene sensing modulator: Toward low-noise, self-powered wireless microsensors. IEEE Sens. J. 2017, 17, 7239–7247. [Google Scholar] [CrossRef]
- Demori, M.; Masud, M.; Bau, M.; Ferrari, M.; Ferrari, V. Passive LC sensor label with distance-independent contactless interrogation. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; pp. 1–3. [Google Scholar]
- Deng, W.-J.; Wang, L.-F.; Dong, L.; Huang, Q.-A. Symmetric LC circuit configurations for passive wireless multifunctional sensors. J. Microelectromech. Syst. 2019, 28, 344–350. [Google Scholar] [CrossRef]
- Yu, Z.; Hu, Y. The design of data collection and transmission system based on passive sensors. J. Anhui Univ. (Nat. Sci. Ed.) 2016. [Google Scholar]
- Tan, Y.; Zhu, J.; Ren, L. A two-dimensional wireless and passive sensor for stress monitoring. Sensors 2019, 19, 135. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, J.; Jin, Y. A Passive Wireless Switching Array Based on MEMS Switches. J. Microelectromech. Syst. 2019, 28, 1013–1018. [Google Scholar] [CrossRef]
- McCaffrey, C.; Flak, J.; Pursula, P. Readout Range and Sensing Resolution Optimization of a Reader for Fully Passive Wireless Sensors. IEEE Trans. Instrum. Meas. 2020, 69, 7846–7856. [Google Scholar] [CrossRef]
- Zoha, N. Efficient Data Gathering from Passive Wireless Sensor Networks. In Proceedings of the 2021 Wireless Telecommunications Symposium (WTS), San Francisco, CA, USA, 21–23 April 2021; pp. 1–6. [Google Scholar]
- Kou, H.; Yang, L.; Zhang, X.; Shang, Z.; Shi, J.; Wang, X. Wireless Passive Microwave Antenna-Integrated Temperature Sensor Based on CSRR. Micromachines 2022, 13, 621. [Google Scholar] [CrossRef] [PubMed]
- Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Briscoe, J.-Y.; Dunn, S.; Choi, D.; Jin, M.-J.; Kim, I.; Kim, S.-H. Mechanically Powered Transparent Flexible Charge-Generating Nanodevices with Piezoelectric ZnO Nanorods. Adv. Mater. 2009, 21, 2185–2189. [Google Scholar]
- Gorlatova, M.; Sarik, J.; Grebla, G.; Cong, M.; Kymissis, I.; Zussman, G. Movers and shakers: Kinetic energy harvesting for the internet of things. IEEE J. Sel. Areas Commun. 2015, 33, 1624–1639. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Awad, M.K.; Zhang, N.; Zhou, H.; Shen, X.S. Utility-optimal resource management and allocation algorithm for energy harvesting cognitive radio sensor networks. IEEE J. Sel. Areas Commun. 2016, 34, 3552–3565. [Google Scholar] [CrossRef]
- Srbinovski, B.; Magno, M.; O’Flynn, B.; Pakrashi, V.; Popovici, E. Energy aware adaptive sampling algorithm for energy harvesting wireless sensor networks. In Proceedings of the 2015 IEEE Sensors Applications Symposium (SAS), Zadar, Croatia, 13–15 April 2015; pp. 1–6. [Google Scholar]
- Kosunalp, S. A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access 2016, 4, 5755–5763. [Google Scholar] [CrossRef]
- Kumari, K.; Sathiya, S. Structural Optimization of 2-DOF Cantilever Based Energy Harvester Using Krill-Herd Algorithm to Obtain Maximum Efficiency. In Proceedings of the 2020 First IEEE International Conference on Measurement, Instrumentation, Control and Automation (ICMICA), Kurukshetra, India, 24–26 June 2020; pp. 1–4. [Google Scholar]
- Hwang, G.T.; Annapureddy, V.; Han, J.H.; Joe, D.J.; Baek, C.; Park, D.Y.; Kim, D.H.; Park, J.H.; Jeong, C.K.; Park, K.I. Self-powered wireless sensor node enabled by an aerosol-deposited PZT flexible energy harvester. Adv. Energy Mater. 2016, 6, 1600237. [Google Scholar] [CrossRef]
- Buccolini, L.; Conti, M. An energy harvester interface for self-powered wireless speed sensor. IEEE Sens. J. 2016, 17, 1097–1104. [Google Scholar] [CrossRef]
- Song, H.; Kim, T.; Im, H.; Ovalle-Robles, R.; Kang, T.J.; Kim, Y.H. Flow-less and shape-conformable CNT sheet nanogenerator for self-powered motion sensor. Nanoscale 2016, 10, 1039. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Choi, H.; Kim, Y.; We, J.H.; Shin, J.S.; Lee, H.E.; Oh, M.-W.; Lee, K.J.; Jin, B. Cho Post Ionized Defect Engineering of the Screen-Printed Bi2Te2.7Se0.3 Thick Film for High Performance Flexible Thermoelectric Generator. Nano Energy 2017, 31, 258–263. [Google Scholar] [CrossRef]
- Shankaregowda, S.A.; Ahmed, R.F.S.M.; Nanjegowda, C.B.; Wang, J.; Guan, S.; Puttaswamy, M.; Amini, A.; Zhang, Y.; Kong, D.; Sannathammegowda, K.; et al. Single-electrode triboelectric nanogenerator based on economical graphite coated paper for harvesting waste environmental energy. Nano Energy 2019, 66, 104141. [Google Scholar] [CrossRef]
- Bobinger, M.; Keddis, S.; Hinterleuthner, S.; Becherer, M.; Kluge, F.; Schwesinger, N.; Salmerón, J.F.; Lugli, P.; Rivadeneyra, A. Light and pressure sensors based on PVDF with sprayed and transparent electrodes for self-powered wireless sensor nodes. IEEE Sens. J. 2018, 19, 1114–1126. [Google Scholar] [CrossRef]
- Guan, M.; Wang, K.; Xu, D.; Liao, W.H. Design and experimental investigation of a low-voltage thermoelectric energy harvesting system for wireless sensor nodes. Energy Convers. Manag. 2017, 138, 30–37. [Google Scholar] [CrossRef]
- Kim, Y.J.; Gu, H.M.; Kim, C.S.; Choi, H.; Lee, G.; Kim, S.; Yi, K.K.; Lee, S.G.; Cho, B.J. High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy 2018, 162, 526–533. [Google Scholar] [CrossRef]
- Jushi, A.; Pegatoquet, A.; Le, T.N. Wind energy harvesting for autonomous wireless sensor networks. In Proceedings of the 2016 Euromicro Conference on Digital System Design (DSD), Limassol, Cyprus, 31 August–2 September 2016; pp. 301–308. [Google Scholar]
- Park, H.; Lee, D.; Park, G.; Park, S.; Khan, S.; Kim, J.; Kim, W. Energy harvesting using thermoelectricity for IoT (Internet of Things) and E-skin sensors. J. Phys. Energy 2019. [Google Scholar] [CrossRef]
- Fatma, B.; Gupta, S.; Chatterjee, C.; Bhunia, R.; Verma, V.; Garg, A. Triboelectric generators made of mechanically robust PVDF films as self-powered autonomous sensors for wireless transmission based remote security systems. J. Mater. Chem. A 2020, 8, 15023–15033. [Google Scholar] [CrossRef]
- Tairab, A.M.; Wang, H.; Hao, D.; Azam, A.; Ahmed, A.; Zhang, Z. A hybrid multimodal energy harvester for self-powered wireless sensors in the railway. Energy Sustain. Dev. 2022, 68, 150–169. [Google Scholar] [CrossRef]
- Xu, L.; Xuan, W.; Chen, J.; Zhang, C.; Tang, Y.; Huang, X.; Li, W.; Jin, H.; Dong, S.; Yin, W.; et al. Fully self-powered instantaneous wireless humidity sensing system based on triboelectric nanogenerator. Nano Energy 2021, 83, 105814. [Google Scholar] [CrossRef]
- Jiang, C.; Li, X.; Lian, S.W.M.; Ying, Y.; Ho, J.S.; Ping, J. Wireless technologies for energy harvesting and transmission for ambient self-powered systems. ACS Nano 2021, 15, 9328–9354. [Google Scholar] [CrossRef] [PubMed]
- Liea, B.; Loh, K.J. Passive wireless sensors for monitoring particle movement at soil-structure interfaces. In Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010, San Diego, CA, USA, 7–11 March 2010; Volume 7647, pp. 129–140. [Google Scholar]
- Cho, C.; Yi, X.; Li, D.; Wang, Y.; Tentzeris, M.M. Passive Wireless Frequency Doubling Antenna Sensor for Strain and Crack Sensing. IEEE Sens. J. 2016, 16, 5725–5733. [Google Scholar] [CrossRef]
- Matsunaga, E.; Nakamura, M.; Minotani, T.; Tsuda, M. Paintable wireless passive sensor based on electromagnetic waveguide to detect loose bolts for remote infrastructure inspection. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Khalifeh, R.; Yasri, M.S.; Lescop, B.; Gallée, F.; Diler, E.; Thierry, D.; Rioual, S. Development of wireless and passive corrosion sensors for material degradation monitoring in coastal zones and immersed environment. IEEE J. Ocean. Eng. 2016, 41, 776–782. [Google Scholar] [CrossRef]
- Askari, H.; Asadi, E.; Saadatnia, Z.; Khajepour, A.; Khamesee, M.B.; Zu, J. A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring, concept, modelling and optimization. Nano Energy 2017, 32, 105–116. [Google Scholar] [CrossRef]
- Kundu, P.; Darpe, A.K.; Singh, S.P.; Gupta, K. A review on condition monitoring technologies for railway rolling stock. In Proceedings of the Fourth European Conference of the Prognostics and Health Management Society 2018, Utrecht, The Netherlands, 3–6 July 2018. [Google Scholar]
- Kawamura, T.; Ryuo, S.; Iwasawa, N. Power Consumption Prediction Method for Train-Health Monitoring Wireless Sensor Networks. Electron. Commun. Jpn. 2018, 101, 24–32. [Google Scholar] [CrossRef]
- Rahimi, R.; Brener, U.; Ochoa, M.; Ziaie, B. Flexible and transparent pH monitoring system with NFC communication for wound monitoring applications. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 125–128. [Google Scholar]
- Deng, W.J.; Wang, L.F.; Dong, L.; Huang, Q.A. Flexible passive wireless pressure and moisture dual-parameter sensor for wound monitoring. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Charkhabi, S.; Jackson, K.J.; Beierle, A.M.; Carr, A.R.; Zellner, E.M.; Reuel, N.F. Monitoring wound health through bandages with passive LC resonant sensors. ACS Sens. 2020, 6, 111–122. [Google Scholar] [CrossRef]
- Nappi, S.; Miozzi, C.; Mazzaracchio, V.; Fiore, L.; Camera, F.; D’Uva, N.; Amendola, S.; Occhiuzzi, C.; Arduini, F.; Marrocco, G. A Plug & Play flexible skin sensor for the wireless monitoring of pandemics. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 20–23 June 2021; pp. 1–4. [Google Scholar]
- Zhang, Q.; Yang, G.; Xue, L.; Dong, G.; Su, W.; Cui, M.J.; Wang, Z.G.; Liu, M.; Zhou, Z.; Zhang, X. Ultrasoft and Biocompatible Magnetic-Hydrogel-Based Strain Sensors for Wireless Passive Biomechanical Monitoring. ACS Nano 2022, 16, 21555–21564. [Google Scholar] [CrossRef]
- Kouhani, M.H.M.; Wu, J.; Tavakoli, A.; Weber, A.J.; Li, W. Wireless, passive strain sensor in a doughnut-shaped contact lens for continuous non-invasive self-monitoring of intraocular pressure. Lab Chip 2020, 20, 332–342. [Google Scholar] [CrossRef]
- Ren, L.; Yu, K.; Tan, Y. Wireless and passive magnetoelastic-based sensor for force monitoring of artificial bone. IEEE Sens. J. 2018, 19, 2096–2104. [Google Scholar] [CrossRef]
- Ouyang, H.; Tian, J.; Sun, G.; Zou, Y.; Liu, Z.; Li, H.; Zhao, L.; Shi, B.; Fan, Y.; Fan, Y. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv. Mater. 2017, 29, 1703456. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Yang, Q.; Wang, D.; Luo, W.; Wang, W.; Lin, M.; Liang, D.; Luo, Q. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Guo, J.; Chen, S.; Tian, S.; Liu, K.; Ni, J.; Zhao, M.; Kang, Y.; Ma, X.; Guo, J. 5G-enabled ultra-sensitive fluorescence sensor for proactive prognosis of COVID-19. Biosens. Bioelectron. 2021, 181, 113160. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-T.; Kong, C.-H.; Muthu, B.A.; Sivaparthipan, C.B. Big data and ambient intelligence in IoT-based wireless student health monitoring system. Aggress. Violent Behav. 2021, 101601. [Google Scholar]
- Zhang, H.; Hong, Y.; Liang, T.; Zhang, H.; Tan, Q.; Xue, C.; Liu, J.; Zhang, W.; Xiong, J. Phase interrogation used for a wireless passive pressure sensor in an 800 °C high-temperature environment. Sensors 2015, 15, 2548–2564. [Google Scholar] [CrossRef]
- Zhu, J.; Liang, D.; Li, F. Application of passive wireless temperature measuring Device in Transformer. Electr. Technol. 2020, 21, 6. [Google Scholar]
- Zhou, Q.; Huang, H.; Wu, C.; Wen, G.; Liu, B. A self-powered sensor for drill pipe capable of monitoring rotation speed and direction based on triboelectric nanogenerator. Rev. Sci. Instrum. 2021, 92, 055006. [Google Scholar] [CrossRef]
- Lin, S.; Zhu, L.; Qiu, Y.; Jiang, Z.; Wang, Y.; Zhu, J.; Wu, H. A self-powered multi-functional sensor based on triboelectric nanogenerator for monitoring states of rotating motion. Nano Energy 2021, 83, 105857. [Google Scholar] [CrossRef]
- Yu, D.; Zheng, Z.; Liu, J.; Xiao, H.; Huangfu, G.; Guo, Y. Super flexible and lead-free piezoelectric nanogenerator as a highly sensitive self-powered sensor for human motion monitoring. Nano-Micro Lett. 2021, 13, 117. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, G.; Li, X.; Qin, Y.; Xu, D.; Tang, W.; Yin, H.; Wei, X.; Jia, L. Self-powered Triboelectric Nano Vibration Accelerometer Based Wireless Sensor System for Railway State Health Monitoring. Nano Energy 2017, 34, 549–555. [Google Scholar] [CrossRef]
- Qian, J.; Kim, D.S.; Lee, D.W. On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring. Nano Energy 2018, 49, 126–136. [Google Scholar] [CrossRef]
- Ren, L.; Yu, K.; Tan, Y. A self-powered magnetostrictive sensor for long-term earthquake monitoring. IEEE Trans. Magn. 2020, 56, 1–5. [Google Scholar] [CrossRef]
Sensor Type | Sensitive Materials | Uses | Range of Tests | Sensitivity | Operating Frequency | Others |
---|---|---|---|---|---|---|
Temperature sensors [57] | Epoxy | Real-time detection of high-voltage safety circuit systems | 200 to 1200 °C | 7.016 kHz/°C | 428–439 MHz | Operating frequency: 1.7 °C/s |
Temperature sensors [58] | Alumina ceramic | High-voltage safety circuit systems | 25 to 1000 °C | 2 kHz/°C | 27.6 MHz | Sensor quality factor: 78 |
Temperature sensors [61] | Nickel, Silicon | Food quality testing | 0 to 100 °C | 46.61 kHz/°C | Around 137.00 MHz | - |
Temperature sensors [64] | SiCNO-BN | High temperature testing | Up to 1250 °C | - | 10.706–10.693 GHz | - |
Temperature sensors [65] | Ceramic Oxide | Real-time detection of high-voltage safety circuit systems | 200 to 1200 °C | 170 kHz/°C | Around 50 MHz | Sensor quality factor: 34.5–43 |
Humidity sensors [68] | Polyimide, Ag | - | 15~95% RH | −3.7% | 13.56 MHz | - |
Humidity sensors [69] | Graphene oxide | - | 15~95% RH | 18.75% | 30–40 MHz | - |
Humidity sensors [70] | Synthesis of silicon dioxide with hydrophilic alkene-based monomers | - | 11~95% RH | 40.1% | Operating frequency: 3.58 RH/s | |
Humidity sensors [72] | Optimisation of graphene oxide | - | Best 32.8% RH | 40.1% | - | 5 RH/s |
Pressure sensors [74] | Polyimide, acrylic, Cu | - | 0–60 mmHg | 3 kHz/Pa | 109 MHz | - |
Pressure sensors [77] | Sapphire | - | Up to 800 Pa | 21.7 kHz/Pa | 12.4–18.0 GHz | - |
Pressure sensors [81] | Optimisation of graphene oxide | - | 17–200 kPa | 1.5 ppm/kPa | 886.7 MHz | Response time: 1 s |
Gas sensors [85] | P(VDF-HFP) polymer | Carbon dioxide detection | 5–10 ppm | - | 11.976 kHz | - |
Gas sensors [87] | SnS2, Ceramic | 77–1155 ppm | 21.42 MHz | Dimensions: 25.22 × 0.98 mm3 | ||
Gas sensors [88] | ZFO-NF | Hydrogen Sulphide Detection | 0–1 ppm | - | - | Response time: 10 s |
Gas sensors [89] | Graphene oxide and niobium-doped titanium dioxide | Hydrogen detection | - | - | - | - |
Biosensors [91] | Phenylboronic acid-hydrogel | Glucose | - | 304 KHz/(mg/dL) - | Around 1 GHz | Size: 5 mm × 5 mm × 250 μm |
Biosensors [92] | Hot gelatine—glycerine—ca composite | Protein | - | - | - | - |
Type | Advantages | Disadvantages | Applications |
---|---|---|---|
RF Identification (RFID) [97] | Low power consumption | distances sensor node circuit is complex | Positioning, tracking |
Surface Acoustic Wave (SAW) RFID [100,101] | High sensitivity | High cost and power consumption | Measuring temperature, pressure, velocity of flow |
Harmonic sensors [103,107] | High sensitivity, low false alarm rate | Demanding for readout systems | Positioning |
Capacitive inductance (LC) mode of resonance [95,109] | Simple structure, low power consumption | Vulnerable to external electromagnetic interference | Measure temperature, pressure, humidity |
Radio frequency (RF) cavity type [94] | Long transmission distance | High working frequency band, large volume | Measuring liquid and gas concentrations |
Patch Antenna type [102] | Small size, low cost | The working frequency band is high and will be affected by occlusions | Human posture detection |
Type | Advantages | Disadvantages | Applications |
---|---|---|---|
PiENG [123,125] | High energy collection, high sensitivity, low frequency operating range | Piezoelectric materials are often toxic Fragile | Powering wireless sensor arrays |
PyENG [127,129] | Easy to implement collection environment | Low power collection | Wireless charging for phones, powered by sensor arrays |
TENG [133] | Self-starting without external force | Difficult to maintain the tightness of the friction material | Powering LEDs, small microcontrollers |
Type | Advantages | Disadvantages | Applications |
---|---|---|---|
Light Energy [121,134] | Large energy supply | Higher costs | Wearable wireless monitoring system |
Mechanical energy [124] | Cleaning | High environmental requirements | Passive wireless SAW pressure sensors |
Thermal Energy [127,129] | Convenient collection conditions | Low efficiency | Wireless charging for phones |
Chemical energy [136] | Achieving controlled conditions | High degree of restricted use | Wireless Communication, Passive Wireless Biosensors |
Human Movement Energy [133] | Convenient collection conditions | Collecting less energy | Sound judgement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, D.; Cui, Y.; Ming, F.; Wu, W. Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. Sensors 2023, 23, 8200. https://doi.org/10.3390/s23198200
He D, Cui Y, Ming F, Wu W. Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. Sensors. 2023; 23(19):8200. https://doi.org/10.3390/s23198200
Chicago/Turabian StyleHe, Denghui, Yuanhui Cui, Fangchao Ming, and Weiping Wu. 2023. "Advancements in Passive Wireless Sensors, Materials, Devices, and Applications" Sensors 23, no. 19: 8200. https://doi.org/10.3390/s23198200
APA StyleHe, D., Cui, Y., Ming, F., & Wu, W. (2023). Advancements in Passive Wireless Sensors, Materials, Devices, and Applications. Sensors, 23(19), 8200. https://doi.org/10.3390/s23198200