Differences in EEG Event-Related Potentials during Dual Task in Parkinson’s Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Protocol
2.3. EEG Acquisition and Preprocessing
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Visual Go/NoGo Performance
3.3. Event-Related Potentials
3.3.1. Go cues
3.3.2. NoGo cues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumari, U.; Tan, E.K. LRRK2 in Parkinson’s disease: Genetic and clinical studies from patients. FEBS J. 2009, 276, 6455–6463. [Google Scholar] [CrossRef]
- Thaler, A.; Ash, E.; Gan-Or, Z.; Orr-Urtreger, A.; Giladi, N. The LRRK2 G2019S mutation as the cause of Parkinson’s disease in Ashkenazi Jews. J. Neural Transm. 2009, 116, 1473–1482. [Google Scholar] [CrossRef] [PubMed]
- Orr-Urtreger, A.; Shifrin, C.; Rozovski, U.; Rosner, S.; Bercovich, D.; Gurevich, T.; Yagev-More, H.; Bar-Shira, A.; Giladi, N. The LRRK2 G2019S mutation in Ashkenazi Jews with Parkinson disease: Is there a gender effect? Neurology 2007, 69, 1595–1602. [Google Scholar] [CrossRef] [PubMed]
- Somme, J.H.; Salazar, A.M.; Gonzalez, A.; Tijero, B.; Berganzo, K.; Lezcano, E.; Martinez, M.F.; Zarranz, J.J.; Gómez-Esteban, J.C. Cognitive and behavioral symptoms in Parkinson’s disease patients with the G2019S and R1441G mutations of the LRRK2 gene. Park. Relat. Disord. 2015, 21, 494–499. [Google Scholar] [CrossRef]
- Gan-Or, Z.; Bar-Shira, A.; Mirelman, A.; Gurevich, T.; Kedmi, M.; Giladi, N.; Orr-Urtreger, A. LRRK2 and GBA mutations differentially affect the initial presentation of Parkinson disease. Neurogenetics 2010, 11, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, R.N.; Mirelman, A.; Saunders-Pullman, R.; Tang, M.X.; Mejia Santana, H.; Raymond, D.; Roos, E.; Orbe-Reilly, M.; Gurevich, T.; Bar Shira, A.; et al. Parkinson disease phenotype in Ashkenazi Jews with and without LRRK2 G2019S mutations. Mov. Disord. 2013, 28, 1966–1971. [Google Scholar] [CrossRef] [PubMed]
- Alcalay, R.N.; Mejia-Santana, H.; Tang, M.X.; Rosado, L.; Verbitsky, M.; Kisselev, S.; Ross, B.M.; Louis, E.D.; Comella, C.L.; Colcher, A.; et al. Motor phenotype of LRRK2 G2019S carriers in early-onset Parkinson disease. Arch. Neurol. 2009, 66, 1517–1522. [Google Scholar] [CrossRef]
- Alcalay, R.N.; Mejia-Santana, H.; Mirelman, A.; Saunders-Pullman, R.; Raymond, D.; Palmese, C.; Caccappolo, E.; Ozelius, L.; Orr-Urtreger, A.; Clark, L.; et al. Neuropsychological performance in LRRK2 G2019S carriers with Parkinson’s disease. Park. Relat. Disord. 2015, 21, 106–110. [Google Scholar] [CrossRef]
- Hou, Y.; Luo, C.; Yang, J.; Ou, R.; Song, W.; Chen, Y.; Gong, Q.; Shang, H. Altered intrinsic brain functional connectivity in drug-naïve Parkinson’s disease patients with LRRK2 mutations. Neurosci. Lett. 2018, 675, 145–151. [Google Scholar] [CrossRef]
- Duncan, C.C.; Barry, R.J.; Connolly, J.F.; Fischer, C.; Michie, P.T.; Näätänen, R.; Polich, J.; Reinvang, I.; Van Petten, C. Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clin. Neurophysiol. 2009, 120, 1883–1908. [Google Scholar] [CrossRef]
- Picton, T.W.; Bentin, S.; Berg, P.; Donchin, E.; Hillyard, S.A.; Johnson, R.; Miller, G.A., Jr.; Ritter, W.; Ruchkin, D.S.; Rugg, M.D.; et al. Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology 2000, 37, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Batterink, L.; Karns, C.M.; Neville, H. Dissociable mechanisms supporting awareness: The P300 and gamma in a linguistic attentional blink task. Cereb. Cortex 2012, 22, 2733–2744. [Google Scholar] [CrossRef] [PubMed]
- Soikkeli, R.; Partanen, J.; Soininen, H.; Pääkkönen, A.; Riekkinen, P.S. Slowing of EEG in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 1991, 79, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Polich, J. Clinical application of the P300 event-related brain potential. Phys. Med. Rehabil. Clin. 2004, 15, 133–161. [Google Scholar] [CrossRef] [PubMed]
- Magliero, A.; Bashore, T.R.; Coles, M.G.; Donchin, E. On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology 1984, 21, 171–186. [Google Scholar] [CrossRef]
- Katsarou, Z.; Bostantjopoulou, S.; Kimiskidis, V.; Rossopoulos, E.; Kazis, A. Auditory event-related potentials in Parkinson’s disease in relation to cognitive ability. Percept. Mot. Ski. 2004, 98 Pt. 2, 1441–1448. [Google Scholar] [CrossRef]
- Yilmaz, F.T.; Özkaynak, S.S.; Barçin, E. Contribution of auditory P300 test to the diagnosis of mild cognitive impairment in Parkinson’s disease. Neurol. Sci. 2017, 38, 2103–2109. [Google Scholar] [CrossRef]
- Johnson, R., Jr. On the neural generators of the P300 component of the event-related potential. Psychophysiology 1993, 30, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Ohnuma, A.; Seki, H.; Saso, S.; Kogure, K. Cognitive impairment in Parkinson’s disease assessed by visuomotor performance system and P300 potential. Tohoku J. Exp. Med. 1990, 161, 155–165. [Google Scholar] [CrossRef]
- Maidan, I.; Fahoum, F.; Shustak, S.; Gazit, E.; Patashov, D.; Tchertov, D.; Giladi, N.; Hausdorff, J.M.; Mirelman, A. Changes in event-related potentials during dual task walking in aging and Parkinson’s disease. Clin. Neurophysiol. 2019, 130, 224–230. [Google Scholar] [CrossRef]
- Xu, H.; Gu, L.; Zhang, S.; Wu, Y.; Wei, X.; Wang, C.; Xu, Y.; Guo, Y. N200 and P300 component changes in Parkinson’s disease: A meta-analysis. Neurol. Sci. 2022, 43, 6719–6730. [Google Scholar] [CrossRef] [PubMed]
- Hünerli, D.; Emek-Savas, D.D.; Çavuşoğlu, B.; Dönmez Çolakoğlu, B.; Ada, E.; Yener, G.G. Mild cognitive impairment in Parkinson’s disease is associated with decreased P300 amplitude and reduced putamen volume. Clin. Neurophysiol. 2019, 130, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, T.; Chen, Y.; Zheng, D.; Sun, D.; Tu, Q.; Huang, J.; Zhang, J.; Li, Z. Cognitive Deficit and Aberrant Intrinsic Brain Functional Network in Early-Stage Drug-Naive Parkinson’s Disease. Front. Neurosci. 2022, 16, 725766. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.H.; Azzam, P.N. Characterization of N200 and P300: Selected studies of the event-related potential. Int. J. Med. Sci. 2005, 2, 147. [Google Scholar] [CrossRef]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2008, 45, 152–170. [Google Scholar] [CrossRef]
- Azizian, A.; Freitas, A.L.; Parvaz, M.A.; Squires, N.K. Beware misleading cues: Perceptual similarity modulates the N2/P3 complex. Psychophysiology 2006, 43, 253–260. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Stoerig, P.; Falkenstein, M. ERP—Correlates of response selection in a response conflict paradigm. Brain Res. 2008, 1189, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Lagopoulos, J.; Gordon, E.; Lim, C.L.; Bahramali, H.; Morris, J.G.L.; Clouston, P.; Li, W.; Lesley, J. Automatic processing dysfunction in Parkinson’s disease. Neurol. Res. 1997, 19, 609–612. [Google Scholar] [CrossRef]
- Bocquillon, P.; Bourriez, J.L.; Palmero-Soler, E.; Defebvre, L.; Derambure, P.; Dujardin, K. Impaired Early Attentional Processes in Parkinson’s Disease: A High-Resolution Event-Related Potentials Study. PLoS ONE 2015, 10, e0131654. [Google Scholar] [CrossRef]
- Folmer, R.L.; Vachhani, J.J.; Riggins, A. Electrophysiological evidence of auditory and cognitive processing deficits in Parkinson disease. BioMed Res. Int. 2021, 2021, 6610908. [Google Scholar] [CrossRef]
- Delgado, I. P30.22 Event related potentials (ERP) P300 in cognitive evaluation of Parkinson disease. Clin. Neurophysiol. 2006, 117, 136–137. [Google Scholar] [CrossRef]
- Anjum, M.F.; Dasgupta, S.; Mudumbai, R.; Singh, A.; Cavanagh, J.F.; Narayanan, N.S. Linear predictive coding distinguishes spectral EEG features of Parkinson’s disease. Park. Relat. Disord. 2020, 79, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Waninger, S.; Berka, C.; Stevanovic Karic, M.; Korszen, S.; Mozley, P.D.; Henchcliffe, C.; Kang, Y.; Hesterman, J.; Mangoubi, T.; Verma, A. Neurophysiological biomarkers of Parkinson’s disease. J. Park. Dis. 2020, 10, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Suuronen, I.; Airola, A.; Pahikkala, T.; Murtojärvi, M.; Kaasinen, V.; Railo, H. Budget-based classification of Parkinson’s disease from resting state EEG. IEEE J. Biomed. Health Inform. 2023, 27, 3740–3747. [Google Scholar] [CrossRef] [PubMed]
- Yogev-Seligmann, G.; Hausdorff, J.M.; Giladi, N. The role of executive function and attention in gait. Mov. Disord. 2008, 23, 329–342. [Google Scholar] [CrossRef]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Bokura, H.; Yamaguchi, S.; Kobayashi, S. Event-related potentials for response inhibition in Parkinson’s disease. Neuropsychologia 2005, 43, 967–975. [Google Scholar] [CrossRef]
- Cheng, C.H.; Tsai, H.Y.; Cheng, H.N. The effect of age on N2 and P3 components: A meta-analysis of Go/Nogo tasks. Brain Cogn. 2019, 135, 103574. [Google Scholar] [CrossRef]
- Sosnik, R.; Danziger-Schragenheim, S.; Possti, D.; Fahoum, F.; Giladi, N.; Hausdorff, J.M.; Mirelman, A.; Maidan, I. Impaired inhibitory control during walking in Parkinson’s disease patients: An EEG study. J. Park. Dis. 2022, 12, 243–256. [Google Scholar] [CrossRef]
- Fu, J.; Gao, Q.; Li, S. Application of Intelligent Medical Sensing Technology. Biosensors 2023, 13, 812. [Google Scholar] [CrossRef]
- Carson, N.; Leach, L.; Murphy, K.J. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int. J. Geriatr. Psychiatry 2018, 33, 379–388. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Arnett, J.A.; Labovitz, S.S. Effect of physical layout in performance of the Trail Making Test. Psychol. Assess. 1995, 7, 220. [Google Scholar] [CrossRef]
- Goetz, C.G.; Tilley, B.C.; Shaftman, S.R.; Stebbins, G.T.; Fahn, S.; Martinez-Martin, P.; Poewe, W.; Sampaio, C.; Stern, M.; Dodel, R.; et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov. Disord. 2008, 23, 2129–2170. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 25, 2649–2653. [Google Scholar] [CrossRef]
- Jia, H.; Li, H.; Yu, D. The relationship between ERP components and EEG spatial complexity in a visual Go/Nogo task. J. Neurophysiol. 2017, 117, 275–283. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, P.; Butler, J.S.; Malcolm, B.R.; Foxe, J.J. Recalibration of inhibitory control systems during walking-related dual-task interference: A Mobile Brain-Body Imaging (MOBI) Study. NeuroImage 2014, 94, 55–64. [Google Scholar] [CrossRef]
- Kovacs, C.R. Age-Related Changes in Gait and Obstacle Avoidance Capabilities in Older Adults: A Review. J. Appl. Gerontol. 2005, 24, 21–34. [Google Scholar] [CrossRef]
- Stegemöller, E.L.; Buckley, T.A.; Pitsikoulis, C.; Barthelemy, E.; Roemmich, R.; Hass, C.J. Postural Instability and Gait Impairment During Obstacle Crossing in Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2012, 93, 703–709. [Google Scholar] [CrossRef]
- Buhmann, C.; Kraft, S.; Hinkelmann, K.; Krause, S.; Gerloff, C.; Zangemeister, W.H. Visual Attention and Saccadic Oculomotor Control in Parkinson’s Disease. Eur. Neurol. 2015, 73, 283–293. [Google Scholar] [CrossRef]
- Falkenstein, M.; Hoormann, J.; Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. 1999, 101, 267–291. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Mahoney, J.R.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Verghese, J. fNIRS study of walking and walking while talking in young and old individuals. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2011, 66, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Holtzer, R.; Mahoney, J.R.; Izzetoglu, M.; Wang, C.; England, S.; Verghese, J. Online fronto-cortical control of simple and attention-demanding locomotion in humans. NeuroImage 2015, 112, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Mirelman, A.; Maidan, I.; Bernad-Elazari, H.; Nieuwhof, F.; Reelick, M.; Giladi, N.; Hausdorff, J.M. Increased frontal brain activation during walking while dual tasking: An fNIRS study in healthy young adults. J. Neuroeng. Rehabil. 2014, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Brønnick, K.; Larsen, J.P.; Tysnes, O.B.; Alves, G. Cognitive impairment in incident, untreated Parkinson disease: The Norwegian ParkWest Study. Neurology 2009, 72, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Koerts, J.; Leenders, K.L.; Brouwer, W.H. Cognitive dysfunction in non-demented Parkinson’s disease patients: Controlled and automatic behavior. Cortex 2009, 45, 922–929. [Google Scholar] [CrossRef]
- Lewis, S.J.G.; Dove, A.; Robbins, T.W.; Barker, R.A.; Owen, A.M. Cognitive Impairments in Early Parkinson’s Disease Are Accompanied by Reductions in Activity in Frontostriatal Neural Circuitry. J. Neurosci. 2003, 23, 6351–6356. [Google Scholar] [CrossRef]
- Kucinski, A.; Albin, R.L.; Lustig, C.; Sarter, M. Modeling falls in Parkinson’s disease: Slow gait, freezing episodes and falls in rats with extensive striatal dopamine loss. Behav. Brain Res. 2015, 282, 155–164. [Google Scholar] [CrossRef]
- Sarter, M.; Albin, R.L.; Kucinski, A.; Lustig, C. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp. Neurol. 2014, 257, 120–129. [Google Scholar] [CrossRef]
- Vandenbossche, J.; Deroost, N.; Soetens, E.; Coomans, D.; Spildooren, J.; Vercruysse, S.; Nieuboer, A.; Kerckhofs, E. Freezing of gait in Parkinson’s disease: Disturbances in automaticity and control. Front. Hum. Neurosci. 2013, 6, 356. [Google Scholar] [CrossRef]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. Brain–computer interface-based adaptive automation to prevent out-of-the-loop phenomenon in air traffic controllers dealing with highly automated systems. Front. Hum. Neurosci. 2019, 13, 296. [Google Scholar] [CrossRef]
- Castiblanco Jimenez, I.A.; Gomez Acevedo, J.S.; Olivetti, E.C.; Marcolin, F.; Ulrich, L.; Moos, S.; Vezzetti, E. User Engagement Comparison between Advergames and Traditional Advertising Using EEG: Does the User’s Engagement Influence Purchase Intention? Electronics 2022, 12, 122. [Google Scholar] [CrossRef]
- Lakshminarayanan, K.; Shah, R.; Daulat, S.R.; Moodley, V.; Yao, Y.; Sengupta, P.; Ramu, V.; Madathil, D. Evaluation of EEG Oscillatory patterns and classification of compound limb tactile imagery. Brain Sci. 2023, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Hu, Z.; Chen, W.; Zhang, S.; Liang, Z.; Li, L.; Zhang, L.; Zhang, Z. M3CV: A multi-subject, multi-session, and multi-task database for EEG-based biometrics challenge. NeuroImage 2022, 264, 119666. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.; Lobaugh, N.J.; Joordens, S.; McIntosh, A.R. EEG variability: Task-driven or subject-driven signal of interest? NeuroImage 2022, 252, 119034. [Google Scholar] [CrossRef] [PubMed]
- Castiblanco Jimenez, I.A.; Marcolin, F.; Ulrich, L.; Moos, S.; Vezzetti, E.; Tornincasa, S. Interpreting emotions with EEG: An experimental study with chromatic variation in VR. In Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing 2022, Ischia, Italy, 1–3 June 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 318–329. [Google Scholar]
Mean (STD) | Idiopathic PD | LRRK2 PD | p-Value |
---|---|---|---|
Gender (F) | F 30.3% | F 40.9% | 0.422 |
Age (years) | 67.69 (9.693) | 65.57 (9.047) | 0.278 |
Years of education | 16.28 (3.314) | 16.19 (2.909) | 0.949 |
Disease duration (months) | 15.95 (18.6) | 17.77 (18.01) | 0.843 |
MOCA score | 25.97 (2.279) | 26.21 (2.529) | 0.663 |
Sitting serial 7 correct answers | 13.82 (6.891) | 20.5 (12.057) | 0.101 |
Dual task serial 7 correct answers | 12.78 (5.846) | 16.2 (10.390) | 0.457 |
CTT-1 (s) | 66.47 (29.806) | 44.63 (21.565) | 0.003 |
CTT-2 (s) | 122.65 (59.882) | 85.85 (33.660) | 0.014 |
MDS-UPDRS (total) | 45.22 (20.632) | 32.45 (16.754) | 0.043 |
MDS-UPDRS part III (motor) | 27.50 (11.706) | 18.05 (10.590) | 0.007 |
LEDD (mg) | 411.77 (398.922) | 307.95 (297.309) | 0.321 |
Gait speed (m/s) | 0.951 (0.210) | 0.909 (0.216) | 0.765 |
Dual task gait speed (m/s) | 0.872 (0.231) | 0.973 (0.420) | 0.190 |
Idiopathic PD | LRRK2-PD | |
---|---|---|
Go N200 amplitude | ↓ | ↔ |
Go N200 latency | ↑ | ↓ |
Go P300 amplitude | ↔ | ↔ |
Go P300 latency | ↔ | ↔ |
NoGo N200 amplitude | ↓ | ↑ |
NoGo N200 latency | ↓ | ↓ |
NoGo P300 amplitude | ↑ | ↓ |
NoGo P300 latency | ↔ | ↔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shkury, E.; Danziger-Schragenheim, S.; Katzir, Z.; Ezra, Y.; Giladi, N.; Mirelman, A.; Maidan, I. Differences in EEG Event-Related Potentials during Dual Task in Parkinson’s Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation. Sensors 2023, 23, 8266. https://doi.org/10.3390/s23198266
Shkury E, Danziger-Schragenheim S, Katzir Z, Ezra Y, Giladi N, Mirelman A, Maidan I. Differences in EEG Event-Related Potentials during Dual Task in Parkinson’s Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation. Sensors. 2023; 23(19):8266. https://doi.org/10.3390/s23198266
Chicago/Turabian StyleShkury, Eden, Shani Danziger-Schragenheim, Zoya Katzir, Yael Ezra, Nir Giladi, Anat Mirelman, and Inbal Maidan. 2023. "Differences in EEG Event-Related Potentials during Dual Task in Parkinson’s Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation" Sensors 23, no. 19: 8266. https://doi.org/10.3390/s23198266
APA StyleShkury, E., Danziger-Schragenheim, S., Katzir, Z., Ezra, Y., Giladi, N., Mirelman, A., & Maidan, I. (2023). Differences in EEG Event-Related Potentials during Dual Task in Parkinson’s Disease Carriers and Non-Carriers of the G2019S-LRRK2 Mutation. Sensors, 23(19), 8266. https://doi.org/10.3390/s23198266